IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v199y2025ip2s0960077925008045.html

Outlier detection via optimized density peaks clustering and K-means-derived objective function

Author

Listed:
  • Xia, Hao
  • Zhou, Yu
  • Li, Jiguang
  • Bai, Lei
  • Li, Jichun
  • Zhou, Fengyu

Abstract

This paper proposes an outlier detection method that integrates optimized Density Peak Clustering (DPC) with K-means-derived objective function analysis, aiming to address the limitations of existing techniques in detecting both global and local outliers as well as sparse clusters. Our approach combines the cluster center selection strategy of DPC with the initialization of K-means, further enhanced by kernel density estimation and k-nearest neighbor techniques to improve both computational efficiency and accuracy in identifying cluster centers. Following K-means clustering, a novel anomaly scoring mechanism is developed through three key steps: 1) within-cluster ascending sorting of objective values, 2) least squares-based function fitting and derivative analysis to estimate rate of change, and 3) comprehensive anomaly scoring through a weighted summation of objective values and their corresponding slopes. The effectiveness of the proposed method is validated through extensive experiments on six complex synthetic datasets and fourteen publicly available real-world datasets, with performance compared against ten state-of-the-art outlier detection algorithms.

Suggested Citation

  • Xia, Hao & Zhou, Yu & Li, Jiguang & Bai, Lei & Li, Jichun & Zhou, Fengyu, 2025. "Outlier detection via optimized density peaks clustering and K-means-derived objective function," Chaos, Solitons & Fractals, Elsevier, vol. 199(P2).
  • Handle: RePEc:eee:chsofr:v:199:y:2025:i:p2:s0960077925008045
    DOI: 10.1016/j.chaos.2025.116791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925008045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Huitaek Yun & Hanjun Kim & Young Hun Jeong & Martin B. G. Jun, 2023. "Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1427-1444, March.
    2. He, Yuanbiao & Qiao, Zijian & Xie, Biaobiao & Ning, Siyuan & Li, Zhecong & Kumar, Anil & Lai, Zhihui, 2024. "Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Li, Mengdi & Huang, Jinfeng & Shi, Peiming & Zhang, Feibin & Gu, Fengshou & Chu, Fulei, 2024. "A secondary optimization strategy in stochastic resonance modelling for the detection of unknown bearing faults," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    4. Douglas M. Hawkins, 1980. "Critical Values for Identifying Outliers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 95-96, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Lifang & Liu, Wenhao & Xiong, Qing, 2025. "Application of QGA-MCKD and stochastic feedback pooling network in variable-condition bearing diagnostics," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    2. Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
    3. Damian Przekop, 2020. "Feature Engineering for Anti-Fraud Models Based on Anomaly Detection," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(3), pages 301-316, September.
    4. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    5. Gaucher, Solenne & Klopp, Olga & Robin, Geneviève, 2021. "Outlier detection in networks with missing links," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    6. Andrzej Chmielowiec, 2021. "Algorithm for error-free determination of the variance of all contiguous subsequences and fixed-length contiguous subsequences for a sequence of industrial measurement data," Computational Statistics, Springer, vol. 36(4), pages 2813-2840, December.
    7. Marc Chataigner & Stéphane Crépey & Jiang Pu, 2020. "Nowcasting Networks," Post-Print hal-03910123, HAL.
    8. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    9. David Juárez-Varón & Victoria Tur-Viñes & Alejandro Rabasa-Dolado & Kristina Polotskaya, 2020. "An Adaptive Machine Learning Methodology Applied to Neuromarketing Analysis: Prediction of Consumer Behaviour Regarding the Key Elements of the Packaging Design of an Educational Toy," Social Sciences, MDPI, vol. 9(9), pages 1-23, September.
    10. Stéphane Crépey & Lehdili Noureddine & Nisrine Madhar & Maud Thomas, 2022. "Anomaly Detection on Financial Time Series by Principal Component Analysis and Neural Networks," Working Papers hal-03777995, HAL.
    11. Zhongqiu Wang & Guan Yuan & Haoran Pei & Yanmei Zhang & Xiao Liu, 2020. "Unsupervised learning trajectory anomaly detection algorithm based on deep representation," International Journal of Distributed Sensor Networks, , vol. 16(12), pages 15501477209, December.
    12. Arata, Linda & Fabrizi, Enrico & Sckokai, Paolo, 2020. "A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data," Economic Modelling, Elsevier, vol. 90(C), pages 190-208.
    13. He, Lifang & Xiong, Qing & Bi, Lujie, 2024. "Optimizing DSFH communication system performance via multi-feedback unsaturated tri-stable stochastic resonance for enhancement of periodic signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    14. Jae-Eun Park & Young-Keun Kim, 2025. "Semi-supervised learning for steel surface inspection using magnetic flux leakage signal," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1021-1031, February.
    15. Wentao Yang & Huaxi He & Dongsheng Wei & Hao Chen, 2022. "Generating pseudo-absence samples of invasive species based on outlier detection in the geographical characteristic space," Journal of Geographical Systems, Springer, vol. 24(2), pages 261-279, April.
    16. Fournier, Nicholas PhD & Farid, Yashar Zeinali PhD & Patire, Anthony David PhD, 2021. "Potential Erroneous Degradation of High Occupancy Vehicle (HOV) Facilities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3z76r7tj, Institute of Transportation Studies, UC Berkeley.
    17. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    18. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Zhang, Gang & Shao, Shun & Huang, Tianzhi, 2024. "A high-data-rate hybrid index communication system based on quadrature chaos shift keying," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    20. Li, Peidu & Luo, Yong & Xia, Xin & Gao, Xiaoqing & Chang, Rui & Li, Zhenchao & Zheng, Junqing & Shi, Wen & Liao, Zhouyi, 2024. "Factors and quantitative impact on electrical yield in fishery complementary photovoltaic power plant under different cloud cover conditions," Energy, Elsevier, vol. 309(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:199:y:2025:i:p2:s0960077925008045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.