IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001523.html
   My bibliography  Save this article

Application of QGA-MCKD and stochastic feedback pooling network in variable-condition bearing diagnostics

Author

Listed:
  • He, Lifang
  • Liu, Wenhao
  • Xiong, Qing

Abstract

Stochastic resonance (SR) has gained significant application in bearing diagnostics due to its ability to amplify weak signals through noise. However, existing SR methods have limitations in effectively enhancing diagnostic performance. To address these challenges, this paper proposes an improved QGA-MCKD-SFPN method, combining Quantum Genetic Algorithm (QGA) with Maximum Correlated Kurtosis Deconvolution (MCKD) and a Stochastic Feedback Pooling Network (SFPN) to enhance system performance. The main contributions include: (1) introducing a double Gaussian potential function constructed by combining power and Gaussian potential functions, facilitating adjustment of the system's potential landscape and alleviating output saturation by expanding particle movement range; (2) preprocessing fault signals with MCKD to enhance fault characteristics and employing QGA to optimize MCKD filter parameters; and (3) incorporating a feedback term into a traditional Stochastic Pooling Network (SPN) to construct the SFPN system, which improves particle dynamics and diagnostic accuracy. Validation using Mechanical Failures Prevention Technology (MFPT) and PADERBORN bearing fault datasets demonstrates that the proposed method consistently outperforms conventional SPN systems under various operating conditions.

Suggested Citation

  • He, Lifang & Liu, Wenhao & Xiong, Qing, 2025. "Application of QGA-MCKD and stochastic feedback pooling network in variable-condition bearing diagnostics," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001523
    DOI: 10.1016/j.chaos.2025.116139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Zhou & Ping Yan & Huayi Liu & Yang Xin, 2019. "A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1693-1715, April.
    2. Qiao, Zijian & Shu, Xuedao, 2021. "Coupled neurons with multi-objective optimization benefit incipient fault identification of machinery," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Zhang, Gang & Liu, Wenhao & Xiong, Qing & Lei, Luming, 2024. "Application of a vibration resonance-assisted enhanced feedforward cascaded stochastic resonance system in bearing diagnostics," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    4. Li, Mengdi & Huang, Jinfeng & Shi, Peiming & Zhang, Feibin & Gu, Fengshou & Chu, Fulei, 2024. "A secondary optimization strategy in stochastic resonance modelling for the detection of unknown bearing faults," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    5. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. He, Yuanbiao & Qiao, Zijian & Xie, Biaobiao & Ning, Siyuan & Li, Zhecong & Kumar, Anil & Lai, Zhihui, 2024. "Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Suo, Jian & Wang, Haiyan & Lian, Wei & Dong, Haitao & Shen, Xiaohong & Yan, Yongsheng, 2023. "Feed-forward cascaded stochastic resonance and its application in ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Xu, Pengfei & Jin, Yanfei & Zhang, Yanxia, 2019. "Stochastic resonance in an underdamped triple-well potential system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 352-362.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Lifang & Xiong, Qing & Bi, Lujie, 2024. "Optimizing DSFH communication system performance via multi-feedback unsaturated tri-stable stochastic resonance for enhancement of periodic signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    2. Huang, Xiaoxiao & Zhang, Gang & Xu, Jiaqi, 2025. "Adaptive multi-parameter constrained time-delay feedback tri-stable stochastic resonance combined with EEMD for rolling bearing fault diagnosis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
    3. He, Yuanbiao & Qiao, Zijian & Xie, Biaobiao & Ning, Siyuan & Li, Zhecong & Kumar, Anil & Lai, Zhihui, 2024. "Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Shi, Zhuozheng & Liao, Zhiqiang & Tabata, Hitoshi, 2022. "Boosting learning ability of overdamped bistable stochastic resonance system based physical reservoir computing model by time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    6. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
    9. Yiping Gao & Liang Gao & Xinyu Li & Yuwei Zheng, 2020. "A zero-shot learning method for fault diagnosis under unknown working loads," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 899-909, April.
    10. Qin, Bo & Zhang, Ying, 2024. "Comprehensive analysis of the mechanism of sensitivity to initial conditions and fractal basins of attraction in a novel variable-distance magnetic pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    11. Li, Mengdi & Huang, Jinfeng & Shi, Peiming & Zhang, Feibin & Gu, Fengshou & Chu, Fulei, 2024. "A secondary optimization strategy in stochastic resonance modelling for the detection of unknown bearing faults," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    12. Xu, Pengfei & Gong, Xulu & Wang, Haotian & Li, Yiwei & Liu, Di, 2023. "A study of stochastic resonance in tri-stable generalized Langevin system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    13. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Ahmad Taher Azar & Farah Ayad Abdul-Majeed & Hasan Sh. Majdi & Ibrahim A. Hameed & Nashwa Ahmad Kamal & Anwar Jaafar Mohamad Jawad & Ali Hashim Abbas & Wameedh Riyadh Abdul-Adheem & Ibraheem Kasim Ibr, 2022. "Parameterization of a Novel Nonlinear Estimator for Uncertain SISO Systems with Noise Scenario," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
    15. Qiao, Zijian & He, Yuanbiao & Liao, Changrong & Zhu, Ronghua, 2023. "Noise-boosted weak signal detection in fractional nonlinear systems enhanced by increasing potential-well width and its application to mechanical fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Hongquan Gui & Jialan Liu & Chi Ma & Mengyuan Li, 2024. "Industrial-oriented machine learning big data framework for temporal-spatial error prediction and control with DTSMGCN model," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1173-1196, March.
    17. Xu, Pengfei & Jin, Yanfei, 2020. "Coherence and stochastic resonance in a second-order asymmetric tri-stable system with memory effects," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Zhang, Gang & Shao, Shun & Huang, Tianzhi, 2024. "A high-data-rate hybrid index communication system based on quadrature chaos shift keying," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    19. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    20. Gao, Fengyin & Kang, Yanmei, 2021. "Positive role of fractional Gaussian noise in FitzHugh–Nagumo neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.