IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003011.html
   My bibliography  Save this article

Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR

Author

Listed:
  • He, Yuanbiao
  • Qiao, Zijian
  • Xie, Biaobiao
  • Ning, Siyuan
  • Li, Zhecong
  • Kumar, Anil
  • Lai, Zhihui

Abstract

For early mechanical fault diagnosis, stochastic resonance (SR) breaks the previous perception that “noise is useless” and uses internal noise or external noise to enhance weak fault characteristics. Moreover, the fractional-order derivative can reinforce noise-enhanced weak fault detection. However, in the face of extremely low signal-to-noise ratio conditions, the enhancement effect of fractional SR induced by a single excitation of internal noise or external noise is unsatisfactory. To solve the above drawbacks, this paper investigates two-stage benefits of both internal and external noise to enhance early fault detection of machinery by exciting parallel array of fractional SR, and using the signal-to-noise ratio (SNR) to adjust these parameters of fractional SR. Then, two experiments including rolling element bearings and gearboxes were performed to validate it. Experimental results show that the proposed method takes on obvious detection ability for low SNR signals, where the amplitude at the fault characteristic frequency is amplified by beyond 300 times in bearing and gearbox fault experiments than one-stage those. In addition, it is also found that as the noise intensity and the number of iterations increase, the amplitude at the fault characteristic frequency tends to the peak value and then falls into a saturation value. Finally, compared with empirical mode decomposition (EMD), the proposed method can amplify the amplitude at the fault characteristic frequency beyond 1000 times in bearing and gearbox fault experiments. It was concluded that the proposed method has obvious advantages in extracting weak fault characteristics of machinery submerged by strong background noise.

Suggested Citation

  • He, Yuanbiao & Qiao, Zijian & Xie, Biaobiao & Ning, Siyuan & Li, Zhecong & Kumar, Anil & Lai, Zhihui, 2024. "Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003011
    DOI: 10.1016/j.chaos.2024.114749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiao, Zijian & He, Yuanbiao & Liao, Changrong & Zhu, Ronghua, 2023. "Noise-boosted weak signal detection in fractional nonlinear systems enhanced by increasing potential-well width and its application to mechanical fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Qiao, Zijian & Shu, Xuedao, 2021. "Coupled neurons with multi-objective optimization benefit incipient fault identification of machinery," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. M. I. Dykman & P. V. E. McClintock, 1998. "What can stochastic resonance do?," Nature, Nature, vol. 391(6665), pages 344-344, January.
    4. Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
    5. Qiang Zhou & Ping Yan & Huayi Liu & Yang Xin, 2019. "A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1693-1715, April.
    6. He, Lifang & Wu, Xia & Zhang, Gang, 2020. "Stochastic resonance in coupled fractional-order linear harmonic oscillators with damping fluctuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Gang & Shao, Shun & Huang, Tianzhi, 2024. "A high-data-rate hybrid index communication system based on quadrature chaos shift keying," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. He, Lifang & Xiong, Qing & Bi, Lujie, 2024. "Optimizing DSFH communication system performance via multi-feedback unsaturated tri-stable stochastic resonance for enhancement of periodic signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Lifang & Xiong, Qing & Bi, Lujie, 2024. "Optimizing DSFH communication system performance via multi-feedback unsaturated tri-stable stochastic resonance for enhancement of periodic signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    2. Jiang, Tieliu & Zhao, Yuze & Wang, Shengwen & Zhang, Lidong & Li, Guohao, 2024. "Aerodynamic characterization of a H-Darrieus wind turbine with a Drag-Disturbed Flow device installation," Energy, Elsevier, vol. 292(C).
    3. Shi, Zhuozheng & Liao, Zhiqiang & Tabata, Hitoshi, 2022. "Boosting learning ability of overdamped bistable stochastic resonance system based physical reservoir computing model by time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
    5. Yiping Gao & Liang Gao & Xinyu Li & Yuwei Zheng, 2020. "A zero-shot learning method for fault diagnosis under unknown working loads," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 899-909, April.
    6. Qin, Bo & Zhang, Ying, 2024. "Comprehensive analysis of the mechanism of sensitivity to initial conditions and fractal basins of attraction in a novel variable-distance magnetic pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    7. Ahmad Taher Azar & Farah Ayad Abdul-Majeed & Hasan Sh. Majdi & Ibrahim A. Hameed & Nashwa Ahmad Kamal & Anwar Jaafar Mohamad Jawad & Ali Hashim Abbas & Wameedh Riyadh Abdul-Adheem & Ibraheem Kasim Ibr, 2022. "Parameterization of a Novel Nonlinear Estimator for Uncertain SISO Systems with Noise Scenario," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
    8. Xiang, Jiawei & Guo, Jianchun & Li, Xiaoqi, 2024. "A two-stage Duffing equation-based oscillator and stochastic resonance for mechanical fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Suo, Jian & Wang, Haiyan & Lian, Wei & Dong, Haitao & Shen, Xiaohong & Yan, Yongsheng, 2023. "Feed-forward cascaded stochastic resonance and its application in ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Qiao, Zijian & He, Yuanbiao & Liao, Changrong & Zhu, Ronghua, 2023. "Noise-boosted weak signal detection in fractional nonlinear systems enhanced by increasing potential-well width and its application to mechanical fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Ren, Yuhao & Pan, Yan & Duan, Fabing, 2022. "SNR gain enhancement in a generalized matched filter using artificial optimal noise," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    12. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    13. Zhang, Ruoqi & Meng, Lin & Yu, Lei & Shi, Sihong & Wang, Huiqi, 2024. "Collective dynamics of fluctuating–damping coupled oscillators in network structures: Stability, synchronism, and resonant behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    14. Zilong Zhuang & Liangxun Guo & Zizhao Huang & Yanning Sun & Wei Qin & Zhao-Hui Sun, 2021. "DyS-IENN: a novel multiclass imbalanced learning method for early warning of tardiness in rocket final assembly process," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2197-2207, December.
    15. Ueda, Michihito, 2010. "Improvement of signal-to-noise ratio by stochastic resonance in sigmoid function threshold systems, demonstrated using a CMOS inverter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 1978-1985.
    16. Zhang, Gang & Zeng, Yujie & Jiang, Zhongjun, 2022. "A novel two-dimensional exponential potential bi-stable stochastic resonance system and its application in bearing fault diagnosis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    17. Zhang, Gang & Liu, Xiaoman & Zhang, Tianqi, 2022. "Two-Dimensional Tri-stable Stochastic Resonance system and its application in bearing fault detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    18. Zhu, Jinjie & Zhao, Feng & Li, Yang & Liu, Xianbin, 2024. "Rotational stochastic resonance in multistable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    19. Ke Zhao & Hongkai Jiang & Zhenghong Wu & Tengfei Lu, 2022. "A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 151-165, January.
    20. Duan, Fabing & Chapeau-Blondeau, François & Abbott, Derek, 2009. "Input–output gain of collective response in an uncoupled parallel array of saturating dynamical subsystems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1345-1351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.