IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03910123.html
   My bibliography  Save this paper

Nowcasting Networks

Author

Listed:
  • Marc Chataigner
  • Stéphane Crépey

    (UFR Mathématiques UPCité - UFR Mathématiques [Sciences] - Université Paris Cité - UPCité - Université Paris Cité, LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - UPD7 - Université Paris Diderot - Paris 7 - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique)

  • Jiang Pu

Abstract

We devise a neural network based compression/completion methodology for financial nowcasting. The latter is meant in a broad sense encompassing completion of gridded values, interpolation, or outlier detection, in the context of financial time series of curves or surfaces (also applicable in higher dimensions, at least in theory). In particular, we introduce an original architecture amenable to the treatment of data defined at variable grid nodes (by far the most common situation in financial nowcasting applications, so that PCA or classical autoencoder methods are not applicable). This is illustrated by three case studies on real data sets. First, we introduce our approach on repo curves data (with moving time-to-maturity as calendar time passes). Second, we show that our approach outperforms elementary interpolation benchmarks on an equity derivative surfaces data set (with moving time-to-maturity again). We also obtain a satisfying performance for outlier detection and surface completion. Third, we benchmark our approach against PCA on at-the-money swaption surfaces redefined at constant expiry/tenor grid nodes. Our approach is then shown to perform as well as (even if not obviously better than) the PCA (which, however, is not be applicable to the native, raw data defined on a moving timeto-expiry grid).

Suggested Citation

  • Marc Chataigner & Stéphane Crépey & Jiang Pu, 2020. "Nowcasting Networks," Post-Print hal-03910123, HAL.
  • Handle: RePEc:hal:journl:hal-03910123
    Note: View the original document on HAL open archive server: https://hal.science/hal-03910123v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03910123v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goix, Nicolas & Sabourin, Anne & Clémençon, Stephan, 2017. "Sparse representation of multivariate extremes with applications to anomaly detection," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 12-31.
    2. Douglas M. Hawkins, 1980. "Critical Values for Identifying Outliers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 95-96, March.
    3. Kwangil Ro & Changliang Zou & Zhaojun Wang & Guosheng Yin, 2015. "Outlier detection for high-dimensional data," Biometrika, Biometrika Trust, vol. 102(3), pages 589-599.
    4. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    5. Anders B. Trolle & Eduardo S. Schwartz, 2010. "An Empirical Analysis of the Swaption Cube," NBER Working Papers 16549, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Chataigner & Stephane Crepey & Jiang Pu, 2020. "Nowcasting Networks," Papers 2011.13687, arXiv.org.
    2. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    3. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    4. Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
    5. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    6. Andrzej Chmielowiec, 2021. "Algorithm for error-free determination of the variance of all contiguous subsequences and fixed-length contiguous subsequences for a sequence of industrial measurement data," Computational Statistics, Springer, vol. 36(4), pages 2813-2840, December.
    7. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    8. Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017. "Functional linear regression with functional response," Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
    9. David Juárez-Varón & Victoria Tur-Viñes & Alejandro Rabasa-Dolado & Kristina Polotskaya, 2020. "An Adaptive Machine Learning Methodology Applied to Neuromarketing Analysis: Prediction of Consumer Behaviour Regarding the Key Elements of the Packaging Design of an Educational Toy," Social Sciences, MDPI, vol. 9(9), pages 1-23, September.
    10. Hammad Siddiqi & Sajid Anwar, 2020. "The Pricing Kernel Puzzle: A Real Phenomenon or a Statistical Artifact?," International Review of Finance, International Review of Finance Ltd., vol. 20(2), pages 485-491, June.
    11. Michail Tsagris, 2022. "The FEDHC Bayesian Network Learning Algorithm," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    12. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    13. Dragan Kukolj & Nikola Gradojevic & Camillo Lento, 2012. "Improving Non-Parametric Option Pricing during the Financial Crisis," Working Paper series 35_12, Rimini Centre for Economic Analysis.
    14. Chung, Hee Cheol & Ahn, Jeongyoun, 2021. "Subspace rotations for high-dimensional outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    15. Zhongqiu Wang & Guan Yuan & Haoran Pei & Yanmei Zhang & Xiao Liu, 2020. "Unsupervised learning trajectory anomaly detection algorithm based on deep representation," International Journal of Distributed Sensor Networks, , vol. 16(12), pages 15501477209, December.
    16. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    17. Arata, Linda & Fabrizi, Enrico & Sckokai, Paolo, 2020. "A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data," Economic Modelling, Elsevier, vol. 90(C), pages 190-208.
    18. Haven, Emmanuel & Liu, Xiaoquan & Ma, Chenghu & Shen, Liya, 2009. "Revealing the implied risk-neutral MGF from options: The wavelet method," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 692-709, March.
    19. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    20. Wentao Yang & Huaxi He & Dongsheng Wei & Hao Chen, 2022. "Generating pseudo-absence samples of invasive species based on outlier detection in the geographical characteristic space," Journal of Geographical Systems, Springer, vol. 24(2), pages 261-279, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03910123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.