IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008992.html
   My bibliography  Save this article

Dynamical regulation of epileptiform discharges caused by abnormal astrocyte function with optogenetic stimulation

Author

Listed:
  • Zhao, Jinyi
  • Yu, Ying
  • Wang, Qingyun

Abstract

A simple network model consisting of a pyramidal neuron, an interneuron, and an astrocyte is constructed to simulate epileptiform discharges, focusing on the role of the interneuron in the pathological state. Simulation results show that with the change of the parameters related to abnormal glutamate degradation, the system can be transformed from bursting discharges or subthreshold oscillations to seizure-like discharges containing depolarization block. Meanwhile, the proposal of optogenetics has made it possible to target specific cells to modulate seizures, however, discoveries remain to be made regarding the specific effects limited by light mechanisms, stimulation patterns, and other factors. Hence, based on the constructed model, firstly, the experimental phenomenon that different types of light mechanisms are required to target the interneuron to control seizures under different situations is verified, and further, the effect of blue light targeting the astrocyte on seizure thresholds is revealed. The results demonstrate that the choice of stimulation frequency for seizure control varies in different situations, but the pulse width must be larger to be more conducive to control. In particular, the inhibitory photostimulation may change bursting discharges into spike discharges or subthreshold oscillations, in addition to eliminating the depolarization block part of the bursting discharges. Due to the slow-scale variation of calcium dynamics, stimulation with the same duty cycle does not have a consistent effect on thresholds for the appearance of epileptiform discharges. More importantly, by means of dynamical changes in the calcium signal near the bifurcation point from oscillation to resting, the effect of different stimulation patterns on the onset threshold can be explained. Our results may provide theoretical insight for the application of optogenetics in epileptic disorders caused by abnormal astrocyte function.

Suggested Citation

  • Zhao, Jinyi & Yu, Ying & Wang, Qingyun, 2022. "Dynamical regulation of epileptiform discharges caused by abnormal astrocyte function with optogenetic stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008992
    DOI: 10.1016/j.chaos.2022.112720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta Gómez-Gonzalo & Gabriele Losi & Angela Chiavegato & Micaela Zonta & Mario Cammarota & Marco Brondi & Francesco Vetri & Laura Uva & Tullio Pozzan & Marco de Curtis & Gian Michele Ratto & Giorgio , 2010. "An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold," PLOS Biology, Public Library of Science, vol. 8(4), pages 1-19, April.
    2. Gertrudis Perea & Aimei Yang & Edward S. Boyden & Mriganka Sur, 2014. "Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo," Nature Communications, Nature, vol. 5(1), pages 1-12, May.
    3. Esther Krook-Magnuson & Caren Armstrong & Mikko Oijala & Ivan Soltesz, 2013. "On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    4. Mengmeng Du & Jiajia Li & Liang Chen & Yuguo Yu & Ying Wu, 2018. "Astrocytic Kir4.1 channels and gap junctions account for spontaneous epileptic seizure," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junli Zhao & Jinyi Sun & Yang Zheng & Yanrong Zheng & Yuying Shao & Yulan Li & Fan Fei & Cenglin Xu & Xiuxiu Liu & Shuang Wang & Yeping Ruan & Jinggen Liu & Shumin Duan & Zhong Chen & Yi Wang, 2022. "Activated astrocytes attenuate neocortical seizures in rodent models through driving Na+-K+-ATPase," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. John-Sebastian Mueller & Fabio C. Tescarollo & Trong Huynh & Daniel A. Brenner & Daniel J. Valdivia & Kanyin Olagbegi & Sahana Sangappa & Spencer C. Chen & Hai Sun, 2023. "Ictogenesis proceeds through discrete phases in hippocampal CA1 seizures in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. James Okoh & Jacqunae Mays & Alexandre Bacq & Juan A. Oses-Prieto & Stefka Tyanova & Chien-Ju Chen & Khalel Imanbeyev & Marion Doladilhe & Hongyi Zhou & Paymaan Jafar-Nejad & Alma Burlingame & Jeffrey, 2023. "Targeted suppression of mTORC2 reduces seizures across models of epilepsy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Ouyang, Zhicheng & Yu, Yangyang & Liu, Zhilong & Feng, PeiHua, 2023. "Transition of spatiotemporal patterns in neuron–astrocyte networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Quynh-Anh Nguyen & Peter M. Klein & Cheng Xie & Katelyn N. Benthall & Jillian Iafrati & Jesslyn Homidan & Jacob T. Bendor & Barna Dudok & Jordan S. Farrell & Tilo Gschwind & Charlotte L. Porter & Anna, 2024. "Acetylcholine receptor based chemogenetics engineered for neuronal inhibition and seizure control assessed in mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Dan Chen & Yong Qi & Jia Zhang & Yunlei Yang, 2022. "Deconstruction of a hypothalamic astrocyte-white adipocyte sympathetic axis that regulates lipolysis in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Wonok Kang & Chanyang Ju & Jaesoon Joo & Jiho Lee & Young-Min Shon & Sung-Min Park, 2022. "Closed-loop direct control of seizure focus in a rodent model of temporal lobe epilepsy via localized electric fields applied sequentially," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Shen, Zhuan & Zhang, Honghui & Du, Lin & Deng, Zichen & Kurths, Jürgen, 2023. "Initiation and termination of epilepsy induced by Lévy noise: A view from the cortical neural mass model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    10. Woo-Hyun Cho & Kyungchul Noh & Byung Hun Lee & Ellane Barcelon & Sang Beom Jun & Hye Yoon Park & Sung Joong Lee, 2022. "Hippocampal astrocytes modulate anxiety-like behavior," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Li, Jiajia & Zhang, Xuan & Du, Mengmeng & Wu, Ying, 2022. "Switching behavior of the gamma power in the neuronal network modulated by the astrocytes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    12. Liza J. Severs & Nicholas E. Bush & Lely A. Quina & Skyler Hidalgo-Andrade & Nicholas J. Burgraff & Tatiana Dashevskiy & Andy Y. Shih & Nathan A. Baertsch & Jan-Marino Ramirez, 2023. "Purinergic signaling mediates neuroglial interactions to modulate sighs," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.