IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42922-y.html
   My bibliography  Save this article

Targeted suppression of mTORC2 reduces seizures across models of epilepsy

Author

Listed:
  • James Okoh

    (Baylor College of Medicine
    Baylor College of Medicine
    Altos Labs Inc, Bay Area Institute)

  • Jacqunae Mays

    (Baylor College of Medicine
    Baylor College of Medicine)

  • Alexandre Bacq

    (Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière)

  • Juan A. Oses-Prieto

    (University of California San Fransisco)

  • Stefka Tyanova

    (Altos Labs Inc, Bay Area Institute)

  • Chien-Ju Chen

    (Baylor College of Medicine
    Baylor College of Medicine
    Novartis Inc)

  • Khalel Imanbeyev

    (Baylor College of Medicine
    Baylor College of Medicine)

  • Marion Doladilhe

    (Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière)

  • Hongyi Zhou

    (Baylor College of Medicine
    Baylor College of Medicine
    Altos Labs Inc, Bay Area Institute)

  • Paymaan Jafar-Nejad

    (Ionis Pharmaceuticals)

  • Alma Burlingame

    (University of California San Fransisco)

  • Jeffrey Noebels

    (Baylor College of Medicine
    Baylor College of Medicine
    Baylor College of Medicine)

  • Stephanie Baulac

    (Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière)

  • Mauro Costa-Mattioli

    (Baylor College of Medicine
    Baylor College of Medicine
    Altos Labs Inc, Bay Area Institute)

Abstract

Epilepsy is a neurological disorder that poses a major threat to public health. Hyperactivation of mTOR complex 1 (mTORC1) is believed to lead to abnormal network rhythmicity associated with epilepsy, and its inhibition is proposed to provide some therapeutic benefit. However, mTOR complex 2 (mTORC2) is also activated in the epileptic brain, and little is known about its role in seizures. Here we discover that genetic deletion of mTORC2 from forebrain neurons is protective against kainic acid-induced behavioral and EEG seizures. Furthermore, inhibition of mTORC2 with a specific antisense oligonucleotide robustly suppresses seizures in several pharmacological and genetic mouse models of epilepsy. Finally, we identify a target of mTORC2, Nav1.2, which has been implicated in epilepsy and neuronal excitability. Our findings, which are generalizable to several models of human seizures, raise the possibility that inhibition of mTORC2 may serve as a broader therapeutic strategy against epilepsy.

Suggested Citation

  • James Okoh & Jacqunae Mays & Alexandre Bacq & Juan A. Oses-Prieto & Stefka Tyanova & Chien-Ju Chen & Khalel Imanbeyev & Marion Doladilhe & Hongyi Zhou & Paymaan Jafar-Nejad & Alma Burlingame & Jeffrey, 2023. "Targeted suppression of mTORC2 reduces seizures across models of epilepsy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42922-y
    DOI: 10.1038/s41467-023-42922-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42922-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42922-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Esther Krook-Magnuson & Caren Armstrong & Mikko Oijala & Ivan Soltesz, 2013. "On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    2. Vasiliki Karalis & Franklin Caval-Holme & Helen S. Bateup, 2022. "Raptor downregulation rescues neuronal phenotypes in mouse models of Tuberous Sclerosis Complex," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Tomi Suomi & Fatemeh Seyednasrollah & Maria K Jaakkola & Thomas Faux & Laura L Elo, 2017. "ROTS: An R package for reproducibility-optimized statistical testing," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-10, May.
    4. Yehezkel Sztainberg & Hong-mei Chen & John W. Swann & Shuang Hao & Bin Tang & Zhenyu Wu & Jianrong Tang & Ying-Wooi Wan & Zhandong Liu & Frank Rigo & Huda Y. Zoghbi, 2015. "Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides," Nature, Nature, vol. 528(7580), pages 123-126, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeo Kubota & Kazuki Mochizuki, 2016. "Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders," IJERPH, MDPI, vol. 13(5), pages 1-12, May.
    2. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. John-Sebastian Mueller & Fabio C. Tescarollo & Trong Huynh & Daniel A. Brenner & Daniel J. Valdivia & Kanyin Olagbegi & Sahana Sangappa & Spencer C. Chen & Hai Sun, 2023. "Ictogenesis proceeds through discrete phases in hippocampal CA1 seizures in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Quynh-Anh Nguyen & Peter M. Klein & Cheng Xie & Katelyn N. Benthall & Jillian Iafrati & Jesslyn Homidan & Jacob T. Bendor & Barna Dudok & Jordan S. Farrell & Tilo Gschwind & Charlotte L. Porter & Anna, 2024. "Acetylcholine receptor based chemogenetics engineered for neuronal inhibition and seizure control assessed in mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Klemens Fröhlich & Eva Brombacher & Matthias Fahrner & Daniel Vogele & Lucas Kook & Niko Pinter & Peter Bronsert & Sylvia Timme-Bronsert & Alexander Schmidt & Katja Bärenfaller & Clemens Kreutz & Oliv, 2022. "Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Wonok Kang & Chanyang Ju & Jaesoon Joo & Jiho Lee & Young-Min Shon & Sung-Min Park, 2022. "Closed-loop direct control of seizure focus in a rodent model of temporal lobe epilepsy via localized electric fields applied sequentially," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Tommi Välikangas & Tomi Suomi & Courtney E. Chandler & Alison J. Scott & Bao Q. Tran & Robert K. Ernst & David R. Goodlett & Laura L. Elo, 2022. "Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Erik Hartman & Aaron M. Scott & Christofer Karlsson & Tirthankar Mohanty & Suvi T. Vaara & Adam Linder & Lars Malmström & Johan Malmström, 2023. "Interpreting biologically informed neural networks for enhanced proteomic biomarker discovery and pathway analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Zhao, Jinyi & Yu, Ying & Wang, Qingyun, 2022. "Dynamical regulation of epileptiform discharges caused by abnormal astrocyte function with optogenetic stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42922-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.