IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip2s0960077924012906.html
   My bibliography  Save this article

Numerical approach and physical description for a two-capacitive neuron and its adaptive network dynamics

Author

Listed:
  • Chen, Yixuan
  • Guo, Qun
  • Zhang, Xiaofeng
  • Wang, Chunni

Abstract

A simple neuron containing one capacitive variable can mimic the dynamical property of electrical activities in a biological neuron. Functional enhancement and activation of adaptive regulation must clarify the energy characteristic and nonlinear property of cell membrane of the neuron. In this work, two capacitors are connected via a nonlinear resistor for exploring the electrical activities in a double-layer nonlinear membrane, and the additive branch circuits are incorporated with piezoelectric ceramic and Josephson junction, which can perceive external acoustic wave and changes of magnetic field. The nonlinear equations for the neural circuit are converted into equivalent dimensionless neuron model in the form of nonlinear oscillator. The energy function for the neuron model is defined and proofed by using the Helmholtz theorem. Any mode transition is dependent on the shift of energy levels and coherence resonance is induced by noisy excitation. An adaptive control law under energy flow is proposed to regulate the firing patterns. Finally, the neuron is clustered to build a neural network with nearest neighbor coupling on a square array. Statistical synchronization factor is defined and calculated to predict the synchronization stability and wave propagation in the neural network. By activating the adaptive growth of coupling intensity and capacitance ratio for the outer and inner cell membrane, target like waves are developed in the neural network.

Suggested Citation

  • Chen, Yixuan & Guo, Qun & Zhang, Xiaofeng & Wang, Chunni, 2024. "Numerical approach and physical description for a two-capacitive neuron and its adaptive network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012906
    DOI: 10.1016/j.chaos.2024.115738
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Lixia & Lu, Qishao, 2006. "Codimension-two bifurcation analysis on firing activities in Chay neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1172-1179.
    2. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    3. Ma, Jun & Guo, Yitong, 2024. "Model approach of electromechanical arm interacted with neural circuit, a minireview," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Zhang, Shaohua & Wang, Cong & Zhang, Hongli & Lin, Hairong, 2024. "Collective dynamics of adaptive memristor synapse-cascaded neural networks based on energy flow," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    5. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    7. Zhao, Jinyi & Yu, Ying & Wang, Qingyun, 2022. "Dynamical regulation of epileptiform discharges caused by abnormal astrocyte function with optogenetic stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Mbeunga, N.K. & Nana, B. & Woafo, P., 2021. "Dynamics of array mechanical arms coupled each to a Fitzhugh-Nagumo neuron," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    9. Yang, Feifei & Song, Xinlin & Yu, Zhenhua, 2024. "Dynamics of a functional neuron model with double membranes," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    10. Wu, Fuqiang & Hu, Xikui & Ma, Jun, 2022. "Estimation of the effect of magnetic field on a memristive neuron," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    11. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Ma, Jun & Guo, Yitong, 2024. "Model approach of electromechanical arm interacted with neural circuit, a minireview," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    4. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Ji, Yansu & Mao, Xiaochen, 2024. "Fast and slow dynamical behaviors of delayed-coupled thermosensitive neurons under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    7. Xu, Ying & Ren, Guodong & Ma, Jun, 2023. "Patterns stability in cardiac tissue under spatial electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    8. Guo, Yitong & Wang, Chunni & Ma, Jun, 2024. "Jointed pendulums driven by a neural circuit, electromechanical arm model approach," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    9. Yang, Feifei & Song, Xinlin & Yu, Zhenhua, 2024. "Dynamics of a functional neuron model with double membranes," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    10. Xu, Quan & Wang, Kai & Feng, Chengtao & Fan, Weiwei & Wang, Ning, 2024. "Dynamical effects of low-frequency and high-frequency current stimuli in a memristive Morris–Lecar neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    11. Jia, Junen & Wang, Chunni & Zhang, Xiaofeng & Zhu, Zhigang, 2024. "Energy and self-adaption in a memristive map neuron," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Jiang, Donghua & Njitacke, Zeric Tabekoueng & Long, Guoqiang & Awrejcewicz, Jan & Zheng, Mingwen & Cai, Lei, 2024. "Novel Tabu learning neuron model with variable activation gradient and its application to secure healthcare," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    13. Muni, Sishu Shankar & Rajagopal, Karthikeyan & Karthikeyan, Anitha & Arun, Sundaram, 2022. "Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Lu, Qishao & Yang, Zhuoqin & Duan, Lixia & Gu, Huaguang & Ren, Wei, 2009. "Dynamics and transitions of firing patterns in deterministic and stochastic neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 577-597.
    16. Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Dynamics and implementation of a functional neuron model with hyperchaotic behavior under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    17. Hu, Dongpo & Ma, Linyi & Song, Zigen & Zheng, Zhaowen & Cheng, Lifang & Liu, Ming, 2024. "Multiple bifurcations of a time-delayed coupled FitzHugh–Rinzel neuron system with chemical and electrical couplings," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    18. Fengling Jia & Peiyan He & Lixin Yang, 2024. "A Novel Coupled Memristive Izhikevich Neuron Model and Its Complex Dynamics," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    19. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    20. Akhmet, Marat & Başkan, Kağan & Yeşil, Cihan, 2024. "Markovian noise-induced delta synchronization approach for Hindmarsh–Rose model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.