IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925003923.html
   My bibliography  Save this article

Hardware implementation and information security application of a novel chaotic system with a cubic memristor and complex parameters

Author

Listed:
  • Jiang, Cuimei
  • Ye, Yunxiao
  • Zhang, Fangfang
  • Kou, Lei
  • Bao, Han
  • Zhang, Jianlin
  • Liu, Hongjun

Abstract

The inherent properties of chaos offer significant potential for information security, especially in cryptographic applications like image encryption. Therefore, a novel complex chaotic system with a memristor and complex parameters is proposed, its dynamic behaviors are investigated, and its hardware implementation is provided. Parameter-dominated attractors are identified and a precise definition is established. The system exhibits an extensive chaotic region and a broad parameter range, enabling the production of infinitely long key streams. A novel image encryption scheme is proposed by integrating the Advanced Encryption Standard with the proposed chaotic system. This system features a new key generation algorithm and a dynamic Substitution-box algorithm. Rigorous experimentation and security analysis confirm that the proposed algorithm successfully mitigates adjacent pixel correlation while exhibiting strong resilience against various attacks. The proposed method will advance the development of complex chaotic cryptography and establish a foundation for its industrial applications in information security.

Suggested Citation

  • Jiang, Cuimei & Ye, Yunxiao & Zhang, Fangfang & Kou, Lei & Bao, Han & Zhang, Jianlin & Liu, Hongjun, 2025. "Hardware implementation and information security application of a novel chaotic system with a cubic memristor and complex parameters," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003923
    DOI: 10.1016/j.chaos.2025.116379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    2. Fangfang Zhang & Zhengfeng Li & Kai Sun & Xue Zhang & Peng Ji, 2021. "A New Hyperchaotic Complex System With Parametric Attractors," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(07), pages 1-20, November.
    3. Yang, Feifei & Song, Xinlin & Yu, Zhenhua, 2024. "Dynamics of a functional neuron model with double membranes," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    4. Liu, Xinkang & Sun, Kehui & Wang, Huihai & He, Shaobo, 2023. "A class of novel discrete memristive chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Zhang, Fangfang & Zhang, Shuaihu & Chen, Guanrong & Li, Chunbiao & Li, Zhengfeng & Pan, Changchun, 2022. "Special attractors and dynamic transport of the hybrid-order complex Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Mengjiao & Yi, Zou & Li, Zhijun, 2025. "A memristive Ikeda map and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    2. Nie, Huaqing & Liu, Jian & Wang, Dan & Zhang, Fangfang & Wang, Wenjing, 2025. "Firing modes of a memristive complex-valued FHN neuron," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    3. Tang, Zhouqing & Wang, Huihai & Zhu, Wanting & Sun, Kehui, 2025. "Dynamics and synchronization of fractional-order Rulkov neuron coupled with discrete fracmemristor," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    4. Fan, Zhenyi & Zhang, Chenkai & Wang, Yiming & Du, Baoxiang, 2023. "Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    8. Ji, Yansu & Mao, Xiaochen, 2024. "Fast and slow dynamical behaviors of delayed-coupled thermosensitive neurons under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    9. Othman Abdullah Almatroud & Viet-Thanh Pham & Giuseppe Grassi & Mohammad Alshammari & Sahar Albosaily & Van Van Huynh, 2023. "Design of High-Dimensional Maps with Sine Terms," Mathematics, MDPI, vol. 11(17), pages 1-10, August.
    10. Qin, Xiaoli & Wang, Cong & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Ye, Lu, 2018. "Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 302-315.
    11. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    13. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    14. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    16. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    17. Ma, Xujiong & Mou, Jun & Xiong, Li & Banerjee, Santo & Cao, Yinghong & Wang, Jieyang, 2021. "A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Aguilera-Morillo, M. Carmen & Aguilera, Ana M. & Jiménez-Molinos, Francisco & Roldán, Juan B., 2019. "Stochastic modeling of Random Access Memories reset transitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 197-209.
    19. Hu, Long-Long & Chen, Ming-Xuan & Wang, Meng-Meng & Zhou, Nan-Run, 2024. "A multi-image encryption scheme based on block compressive sensing and nonlinear bifurcation diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    20. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.