IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000256.html
   My bibliography  Save this article

Dynamics and synchronization of fractional-order Rulkov neuron coupled with discrete fracmemristor

Author

Listed:
  • Tang, Zhouqing
  • Wang, Huihai
  • Zhu, Wanting
  • Sun, Kehui

Abstract

Memristors play an important role in the modeling of neural networks as external stimuli for neuron excitation and biological synapses for information exchange. Recently, the discrete fracmemristor has shown excellent properties in describing the memory effect of nonlinear systems, including biological nervous systems. In this paper, we propose a fractional memristive Rulkov neuron model (FMRN) by introducing the fractional discrete HP-type memristor (FDM-HP) into a single fractional Rulkov neuron (FRN) as electromagnetic radiation. Their parametric modulation dynamics are investigated and compared by means of firing patterns, Lyapunov exponents, bifurcation diagrams and complexity. In addition, to verify the information transfer ability of discrete fracmemristor as a synaptic model, a fractional bi-neuron system is constructed by coupling two FRNs with FDM-HP, which is further subjected to the analyses of phase synchronization and firing behaviors. The simulation results show that the combination of FDM-HP and FRN can effectively enrich the dynamics of neuron system, achieve synchronous firing rhythms, and generate various novel firing patterns. The researches provide the theoretical and experimental supports for neuronal modeling and synapse-based synchronization, which lay the foundation for further researches on complex neural networks.

Suggested Citation

  • Tang, Zhouqing & Wang, Huihai & Zhu, Wanting & Sun, Kehui, 2025. "Dynamics and synchronization of fractional-order Rulkov neuron coupled with discrete fracmemristor," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000256
    DOI: 10.1016/j.chaos.2025.116012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.