IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011037.html
   My bibliography  Save this article

Multi-stable states and synchronicity of a cellular neural network with memristive activation function

Author

Listed:
  • Wu, Huagan
  • Bian, Yixuan
  • Zhang, Yunzhen
  • Guo, Yixuan
  • Xu, Quan
  • Chen, Mo

Abstract

The cellular neural network (CNN) is an implementable solution for fully connected neural networks. Using nanoscale memristor to realize its nonlinear activation function can simplify the circuit implementation of CNN effectively. This paper presents a paradigm of the basic CNN cell by introducing a voltage-controlled memristor as the activating module of its output circuit. A three-cell memristor-based CNN (mCNN) is constructed to demonstrate the parameter- and initial condition-influenced dynamical behaviors induced by the activating memristor. Furtherly, two identical three-cell mCNNs are chosen as the subnets to construct a memristor-coupled mCNN, based on which the multi-stable states and the synchronous behaviors are investigated. Numerical results show that the multi-stable states of the memristor-coupled mCNN are flexibly switched by adjusting the coupling strength and initial conditions. Under the control of the memristor coupler, the two subnets can achieve complete synchronization, lag synchronization and phase synchronization. Finally, the FPGA-based hardware experiments are executed to verify the numerical results.

Suggested Citation

  • Wu, Huagan & Bian, Yixuan & Zhang, Yunzhen & Guo, Yixuan & Xu, Quan & Chen, Mo, 2023. "Multi-stable states and synchronicity of a cellular neural network with memristive activation function," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011037
    DOI: 10.1016/j.chaos.2023.114201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.