IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003448.html
   My bibliography  Save this article

Biphasic action potentials in an individual cellular neural network cell

Author

Listed:
  • Wu, Huagan
  • Gu, Jinxiang
  • Guo, Yixuan
  • Chen, Mo
  • Xu, Quan

Abstract

Hardware circuit that can effectively simulate biological neurons is an important basis for neuromorphic computation. Cellular neural network (CNN) cell is the basic information processor of a CNN, which acts like a neuron in the brain and has good circuit realizability. An individual memristive CNN cell is constructed by using a memristor instead of a linear resistor for imitating the ion channel time-varying conductance, in which abundant biphasic chaotic and periodic spiking activities are uncovered. This provides a new way to simulate biological neurons at the level of analog circuits. This paper first deduces the mathematical model of the memristive CNN cell, analyzes the equilibrium stability and then explores its dynamical behaviors based on numerical simulation. The results display that the different spiking activities can be effectively regulated by the system parameters and excitation parameters. Furthermore, the analog circuit of the memristive CNN cell is designed and the PSpice-based circuit simulations are performed to verify the correctness of the numerical simulations.

Suggested Citation

  • Wu, Huagan & Gu, Jinxiang & Guo, Yixuan & Chen, Mo & Xu, Quan, 2024. "Biphasic action potentials in an individual cellular neural network cell," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003448
    DOI: 10.1016/j.chaos.2024.114792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Huagan & Bian, Yixuan & Zhang, Yunzhen & Guo, Yixuan & Xu, Quan & Chen, Mo, 2023. "Multi-stable states and synchronicity of a cellular neural network with memristive activation function," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Li, Bo & Liang, Houjun & He, Qizhi, 2021. "Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Minati, Ludovico & Bartels, Jim & Li, Chao & Frasca, Mattia & Ito, Hiroyuki, 2022. "Synchronization phenomena in dual-transistor spiking oscillators realized experimentally towards physical reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Baysal, Veli & Solmaz, Ramazan & Ma, Jun, 2023. "Investigation of chaotic resonance in Type-I and Type-II Morris-Lecar neurons," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Huagan & Gu, Jinxiang & Chen, Mo & Wang, Ning & Xu, Quan, 2024. "Bionic firing activities in a dual mem-elements based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    2. Wu, Huagan & Gu, Jinxiang & Wang, Ning & Chen, Mo & Xu, Quan, 2025. "Spiking and bursting activities in an NLAM-based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    2. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Wu, Huagan & Gu, Jinxiang & Wang, Ning & Chen, Mo & Xu, Quan, 2025. "Spiking and bursting activities in an NLAM-based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    4. Ding, Dawei & Jin, Fan & Zhang, Hongwei & Yang, Zongli & Chen, Siqi & Zhu, Haifei & Xu, Xinyue & Liu, Xiang, 2024. "Fractional-order heterogeneous neuron network based on coupled locally-active memristors and its application in image encryption and hiding," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    5. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2025. "Excitability and synchronization of vanadium dioxide memristor-inspired neurons," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 233(C), pages 99-116.
    6. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    7. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    8. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    9. Li, Yongxin & Li, Chunbiao & Zhong, Qing & Zhao, Yibo & Yang, Yong, 2024. "Coexisting hollow chaotic attractors within a steep parameter interval," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    11. Xiong, Yongyong & Zhang, Xiao & Chedjou, Jean Chamberlain & Wu, Yesen & Jiang, Donghua & Kengne, Jacques & Ahmad, Jawad, 2025. "Super extreme event and coexisting attractors in a novel chaotic snap system with hyperbolic sine function: Theoretical investigations and circuit experiments," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    12. Lai, Qiang & Hua, Hanqiang & Zhao, Xiao-Wen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "Image encryption using fission diffusion process and a new hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    13. Wu, Huagan & Gu, Jinxiang & Chen, Mo & Wang, Ning & Xu, Quan, 2024. "Bionic firing activities in a dual mem-elements based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    14. Li, Bo & Liang, Houjun & Shi, Lian & He, Qizhi, 2022. "Complex dynamics of Kopel model with nonsymmetric response between oligopolists," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Guo, Yitong & Wang, Chunni & Ma, Jun, 2024. "Jointed pendulums driven by a neural circuit, electromechanical arm model approach," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    16. Li, Xiaoliang & Li, Bo & Liu, Li, 2023. "Stability and dynamic behaviors of a limited monopoly with a gradient adjustment mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    18. Guo, Lei & Liu, Chengjun & Wu, Youxi & Xu, Guizhi, 2023. "fMRI-based spiking neural network verified by anti-damage capabilities under random attacks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    19. Fei Yu & Wuxiong Zhang & Xiaoli Xiao & Wei Yao & Shuo Cai & Jin Zhang & Chunhua Wang & Yi Li, 2023. "Dynamic Analysis and FPGA Implementation of a New, Simple 5D Memristive Hyperchaotic Sprott-C System," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    20. Kamdjeu Kengne, Léandre & Folifack Signing, Vitrice Ruben & Rossi Sebastiano, Davide & Wafo Tekam, Raoul Blaise & Ngamsa Tegnitsap, Joakim Vianney & Zhao, Manyu & Bao, Qingshi & Kengne, Jacques & Vald, 2025. "Simplest transistor-based chaotic circuit with extreme events: Statistical characterization, synchronization, and analogy with interictal spikes," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.