IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010774.html

Bionic firing activities in a dual mem-elements based CNN cell

Author

Listed:
  • Wu, Huagan
  • Gu, Jinxiang
  • Chen, Mo
  • Wang, Ning
  • Xu, Quan

Abstract

Firing activities provide the potential possibility for achieving bio-brain functionality with high energy-efficient and high-speed information processing performance. This inspires the design of bionic circuits to generate firing activities and develop brain-like applications. In this paper, a dual mem-elements based cellular neural network (CNN) cell is constructed to produce bionic firing activities, in which a non-ideal memcapacitor and an N-type locally active memristor are employed to emulate the functions of the neuronal membrane. The proposed CNN cell has an excitation-dependent equilibrium trajectory and stability. Numerical analysis shows that the dual mem-elements based CNN cell has abundant dynamical behaviors of forward/reverse period-doubling bifurcation routes, chaos crisis, tangent bifurcation, and bubbles with the change of model parameters of the CNN cell, memcapacitor, and exciting source. As a result, the rich firing patterns’ transition can be observed from the two-dimensional dynamics evolution. The analog circuit of the proposed CNN cell is designed, and then a PCB-based hardware circuit is implemented. The experimental results certify the accuracy of the theoretical and numerical analysis.

Suggested Citation

  • Wu, Huagan & Gu, Jinxiang & Chen, Mo & Wang, Ning & Xu, Quan, 2024. "Bionic firing activities in a dual mem-elements based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010774
    DOI: 10.1016/j.chaos.2024.115525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Huagan & Bian, Yixuan & Zhang, Yunzhen & Guo, Yixuan & Xu, Quan & Chen, Mo, 2023. "Multi-stable states and synchronicity of a cellular neural network with memristive activation function," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Suhas Kumar & R. Stanley Williams & Ziwen Wang, 2020. "Third-order nanocircuit elements for neuromorphic engineering," Nature, Nature, vol. 585(7826), pages 518-523, September.
    4. Wu, Huagan & Gu, Jinxiang & Guo, Yixuan & Chen, Mo & Xu, Quan, 2024. "Biphasic action potentials in an individual cellular neural network cell," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Xu, Quan & Ding, Xincheng & Wang, Ning & Chen, Bei & Parastesh, Fatemeh & Chen, Mo, 2024. "Spiking activity in a memcapacitive and memristive emulator-based bionic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    7. Ding, Shoukui & Wang, Ning & Bao, Han & Chen, Bei & Wu, Huagan & Xu, Quan, 2023. "Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Xiu, Chunbo & Zhou, Ruxia & Liu, Yuxia, 2020. "New chaotic memristive cellular neural network and its application in secure communication system," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Huagan & Gu, Jinxiang & Wang, Ning & Chen, Mo & Xu, Quan, 2025. "Spiking and bursting activities in an NLAM-based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Huagan & Gu, Jinxiang & Wang, Ning & Chen, Mo & Xu, Quan, 2025. "Spiking and bursting activities in an NLAM-based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    2. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Xu, Quan & Fang, Yujian & Wu, Huagan & Bao, Han & Wang, Ning, 2024. "Firing patterns and fast–slow dynamics in an N-type LAM-based FitzHugh–Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    4. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Yang, Yukaichen & Xu, Xiang & Si, Gangquan & Xu, Minglin & Li, Chenhao & Xie, Ruicheng, 2025. "Neuromorphic dynamics and behavior synchronization of fractional-order memristive synapses," Chaos, Solitons & Fractals, Elsevier, vol. 197(C).
    6. Zhang, Sen & Li, Yongxin & Lu, Daorong & Li, Chunbiao, 2024. "A novel memristive synapse-coupled ring neural network with countless attractors and its application," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    7. Ying, Jiajie & Min, Fuhong & Wang, Guangyi, 2023. "Neuromorphic behaviors of VO2 memristor-based neurons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    8. Wang, Chunhua & Luo, Dingwei & Deng, Quanli & Yang, Gang, 2024. "Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    9. Xu, Quan & Ding, Xincheng & Wang, Ning & Chen, Bei & Parastesh, Fatemeh & Chen, Mo, 2024. "Spiking activity in a memcapacitive and memristive emulator-based bionic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    10. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. AbdelAty, Amr M. & Fouda, Mohammed E., 2025. "Fractional-order Izhikevich neuron Model: PI-rules numerical simulations and parameter identification," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    13. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2025. "Excitability and synchronization of vanadium dioxide memristor-inspired neurons," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 233(C), pages 99-116.
    14. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    15. Ding, Xincheng & Fan, Weiwei & Wang, Ning & Su, Yuanhui & Chen, Mo & Lin, Yuan & Xu, Quan, 2025. "Dynamical behaviors and firing patterns in a fully memory-element emulator-based bionic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    16. Chen, Qun & Li, Bo & Yin, Wei & Jiang, Xiaowei & Chen, Xiangyong, 2023. "Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    17. Junlin Xiong & Jiao Xie & Bin Cheng & Yudi Dai & Xinyu Cui & Lizheng Wang & Zenglin Liu & Ji Zhou & Naizhou Wang & Xianghan Xu & Xianhui Chen & Sang-Wook Cheong & Shi-Jun Liang & Feng Miao, 2024. "Electrical switching of Ising-superconducting nonreciprocity for quantum neuronal transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Alsaedi, Ahmed & Cao, Jinde & Ahmad, Bashir & Alshehri, Ahmed & Tan, Xuegang, 2022. "Synchronization of master-slave memristive neural networks via fuzzy output-based adaptive strategy," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.