IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v198y2025ics0960077925005508.html

Enriched dynamical behavior of a novel locally active memristor-driven neuron map

Author

Listed:
  • Ma, Tao
  • Mou, Jun
  • Chen, Wanzhong

Abstract

The construction of neuron models using memristors with bionic properties can provide new ideas for brain-like research. This paper proposes a novel discrete locally active memristor (DLAM) designed to drive neuron map to generate complex chaotic dynamics. The nonvolatility and locally active properties of the proposed memristor are exhaustively investigated. The bifurcation behavior is analyzed by varying the DLAM-dependent parameters and interesting Feigenbaum remerging trees are found. Moreover, the variation of the memristor parameters is capable of triggering multistability and generating complex heterogeneous coexistence. Adjusting the initial conditions of the memristor was able to induce offset-boosted coexistence with a hybrid topology. Finally, a pseudo random sequence generator (PRNG) is designed using chaotic sequences generated by DLAM-driven neuron map and shows excellent performance. A DSP experimental platform was built for numerical simulation verification. The novel DLAM is proposed to provide new insights for the study of nonlinear behavior in neuron models.

Suggested Citation

  • Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Enriched dynamical behavior of a novel locally active memristor-driven neuron map," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005508
    DOI: 10.1016/j.chaos.2025.116537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925005508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Ma, Tao & Mou, Jun & Banerjee, Santo & Cao, Yinghong, 2023. "Analysis of the functional behavior of fractional-order discrete neuron under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Lai, Qiang & Lai, Cong & Zhang, Hui & Li, Chunbiao, 2022. "Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Zhao, Qianhan & Bao, Han & Zhang, Xi & Wu, Huagan & Bao, Bocheng, 2024. "Complexity enhancement and grid basin of attraction in a locally active memristor-based multi-cavity map," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Lai, Qiang & Yang, Liang, 2023. "Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Fan, Chunlei & Ding, Qun, 2025. "Design and dynamic analysis of a class of new 3-D discrete memristive hyperchaotic maps with multi-type hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    7. Wang, Mengjiao & Yi, Zou & Li, Zhijun, 2025. "A memristive Ikeda map and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    8. Wang, Chunhua & Li, Yufei & Deng, Quanli, 2025. "Discrete-time fractional-order local active memristor-based Hopfield neural network and its FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    9. Mao, Yidan & Dong, Yujiao & Lu, Zhenzhou & Xiang, Chenyang & Wang, Jinqi & Liang, Yan, 2025. "Second-order locally active memristor based neuronal circuit," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    10. Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Dynamics and implementation of a functional neuron model with hyperchaotic behavior under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Xincheng & Fan, Weiwei & Wang, Ning & Su, Yuanhui & Chen, Mo & Lin, Yuan & Xu, Quan, 2025. "Dynamical behaviors and firing patterns in a fully memory-element emulator-based bionic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    2. Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Dynamics and implementation of a functional neuron model with hyperchaotic behavior under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    3. Wang, Chunhua & Li, Yufei & Deng, Quanli, 2025. "Discrete-time fractional-order local active memristor-based Hopfield neural network and its FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    4. Lai, Qiang & Yang, Liang, 2023. "Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Wang, Chunhua & Luo, Dingwei & Deng, Quanli & Yang, Gang, 2024. "Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    7. Jia, Junen & Wang, Chunni & Zhang, Xiaofeng & Zhu, Zhigang, 2024. "Energy and self-adaption in a memristive map neuron," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Fan, Zhenyi & Sun, Xu & Zhao, Jingjing & Zhang, Chenkai & Du, Baoxiang, 2024. "Dynamics analysis and feasibility verification of a 3D discrete memristive chaotic map with multi-vortex-like volume behavior," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    9. Wan, Qiuzhen & Chen, Chaoyue & Liu, Tieqiao & Rao, Huhui & Dong, Jun, 2025. "High-dimensional memristor-coupled multiple neural networks with spatial multi-structure attractors and application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    10. Feali, Mohammad Saeed, 2025. "Chaotic dynamics of discrete memristor-coupled Sinh map," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    11. Dong, Yingchao & Zhang, Shaohua & Zhang, Hongli & Zhou, Xiaojun & Jiang, Jiading, 2025. "Chaotic evolution optimization: A novel metaheuristic algorithm inspired by chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    12. Ding, Dawei & Liu, Xiang & Zhang, Hongwei & Yang, Zongli & Jin, Fan & Chen, Siqi & Zhou, Haitao, 2025. "Reversible image encryption and hiding algorithm based on fractional-order memristive Hopfield neural network," Chaos, Solitons & Fractals, Elsevier, vol. 199(P2).
    13. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    14. Qin, Bo & Zhang, Ying, 2024. "Comprehensive analysis of the mechanism of sensitivity to initial conditions and fractal basins of attraction in a novel variable-distance magnetic pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    15. Xu, Quan & Fang, Yujian & Wu, Huagan & Bao, Han & Wang, Ning, 2024. "Firing patterns and fast–slow dynamics in an N-type LAM-based FitzHugh–Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    16. Mayada Abualhomos & Abderrahmane Abbes & Gharib Mousa Gharib & Abdallah Shihadeh & Maha S. Al Soudi & Ahmed Atallah Alsaraireh & Adel Ouannas, 2023. "Bifurcation, Hidden Chaos, Entropy and Control in Hénon-Based Fractional Memristor Map with Commensurate and Incommensurate Orders," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    17. Zhou, Mingjie & Li, Guodong & Pan, Hepeng & Song, Xiaoming, 2025. "Discrete memristive hyperchaotic map with heterogeneous and homogeneous multistability and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    18. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    19. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    20. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.