IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics096007792500493x.html
   My bibliography  Save this article

Chaotic dynamics of discrete memristor-coupled Sinh map

Author

Listed:
  • Feali, Mohammad Saeed

Abstract

In this study, a novel discrete memristor-coupled hyperbolic sine (Sinh) map is proposed for the generation of complex chaotic dynamics. The system integrates a discrete memristor model with a hyperbolic sine-based chaotic map, resulting in a two-dimensional system exhibiting complex chaotic dynamics with increased entropy and Lyapunov exponent values. Analytical and numerical results demonstrate the map's ability to produce chaos and hyperchaos through period-doubling bifurcations, as verified by Lyapunov exponent analysis and bifurcation diagrams. The digital implementation of the proposed map was achieved using piecewise linear approximations of the Sinh function to reduce computational complexity and improve real-time processing efficiency. Experimental evaluations suggest that the proposed map reduces implementation cost and increases processing speed compared to prior models. The system's ability to exhibit complex chaotic behavior suggests potential applications in secure communication and random number generation.

Suggested Citation

  • Feali, Mohammad Saeed, 2025. "Chaotic dynamics of discrete memristor-coupled Sinh map," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s096007792500493x
    DOI: 10.1016/j.chaos.2025.116480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792500493X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Qiang & Lai, Cong & Zhang, Hui & Li, Chunbiao, 2022. "Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Karakaya, Barış & Gülten, Arif & Frasca, Mattia, 2019. "A true random bit generator based on a memristive chaotic circuit: Analysis, design and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 143-149.
    3. Peng, Yuexi & Sun, Kehui & He, Shaobo, 2020. "A discrete memristor model and its application in Hénon map," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    4. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Nepomuceno, Erivelton G. & Lima, Arthur M. & Arias-García, Janier & Perc, Matjaž & Repnik, Robert, 2019. "Minimal digital chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 62-66.
    6. Nepomuceno, Erivelton G. & Rodrigues Junior, Heitor M. & Martins, Samir A.M. & Perc, Matjaž & Slavinec, Mitja, 2018. "Interval computing periodic orbits of maps using a piecewise approach," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 67-75.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. Deng, Yue & Zhang, Shuting & Yuan, Fang & Li, Yuxia & Wang, Guangyi, 2025. "Reservoir computing system using discrete memristor for chaotic temporal signal processing," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    3. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Fan, Zhenyi & Zhang, Chenkai & Wang, Yiming & Du, Baoxiang, 2023. "Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Wei Feng & Jiaxin Yang & Xiangyu Zhao & Zhentao Qin & Jing Zhang & Zhengguo Zhu & Heping Wen & Kun Qian, 2024. "A Novel Multi-Channel Image Encryption Algorithm Leveraging Pixel Reorganization and Hyperchaotic Maps," Mathematics, MDPI, vol. 12(24), pages 1-26, December.
    9. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    11. Xu, Quan & Fang, Yujian & Wu, Huagan & Bao, Han & Wang, Ning, 2024. "Firing patterns and fast–slow dynamics in an N-type LAM-based FitzHugh–Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    12. Mayada Abualhomos & Abderrahmane Abbes & Gharib Mousa Gharib & Abdallah Shihadeh & Maha S. Al Soudi & Ahmed Atallah Alsaraireh & Adel Ouannas, 2023. "Bifurcation, Hidden Chaos, Entropy and Control in Hénon-Based Fractional Memristor Map with Commensurate and Incommensurate Orders," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    13. Soliman, Nancy S. & Tolba, Mohammed F. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2019. "Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 292-307.
    14. Zhou, Mingjie & Li, Guodong & Pan, Hepeng & Song, Xiaoming, 2025. "Discrete memristive hyperchaotic map with heterogeneous and homogeneous multistability and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    15. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    16. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    17. Zheng, Jun & Hu, Hanping & Ming, Hao & Zhang, Yanxia, 2021. "Design of a hybrid model for construction of digital chaos and local synchronization," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    18. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Shi, Qianqian & Qu, Shaocheng & An, Xinlei & Wei, Ziming & Zhang, Chen, 2024. "Three-dimensional m-HR neuron model and its application in medical image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    20. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s096007792500493x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.