IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3917-d1542198.html
   My bibliography  Save this article

A Novel Multi-Channel Image Encryption Algorithm Leveraging Pixel Reorganization and Hyperchaotic Maps

Author

Listed:
  • Wei Feng

    (School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China)

  • Jiaxin Yang

    (School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China)

  • Xiangyu Zhao

    (School of Electrical and Information Engineering, Panzhihua University, Panzhihua 617000, China)

  • Zhentao Qin

    (School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China)

  • Jing Zhang

    (School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China)

  • Zhengguo Zhu

    (School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China)

  • Heping Wen

    (School of Electronic Information, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China)

  • Kun Qian

    (Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, Hunan Institute of Science and Technology, Yueyang 414006, China
    College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, China)

Abstract

Chaos-based encryption is promising for safeguarding digital images. Nonetheless, existing chaos-based encryption algorithms still exhibit certain shortcomings. Given this, we propose a novel multi-channel image encryption algorithm that leverages pixel reorganization and hyperchaotic maps (MIEA-PRHM). Our MIEA-PRHM algorithm employs two hyperchaotic maps to jointly generate chaotic sequences, ensuring a larger key space and better randomness. During the encryption process, we first convert input images into two fused matrices through pixel reorganization. Then, we apply two rounds of scrambling and diffusion operations, coupled with one round of substitution operations, to the high 4-bit matrix. For the low 4-bit matrix, we conduct one round of substitution and diffusion operations. Extensive experiments and comparisons demonstrate that MIEA-PRHM outperforms many recent encryption algorithms in various aspects, especially in encryption efficiency.

Suggested Citation

  • Wei Feng & Jiaxin Yang & Xiangyu Zhao & Zhentao Qin & Jing Zhang & Zhengguo Zhu & Heping Wen & Kun Qian, 2024. "A Novel Multi-Channel Image Encryption Algorithm Leveraging Pixel Reorganization and Hyperchaotic Maps," Mathematics, MDPI, vol. 12(24), pages 1-26, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3917-:d:1542198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erkan, Uğur & Toktas, Abdurrahim & Lai, Qiang, 2023. "Design of two dimensional hyperchaotic system through optimization benchmark function," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Lai, Qiang & Lai, Cong & Zhang, Hui & Li, Chunbiao, 2022. "Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Li, Yongxin & Li, Chunbiao & Li, Yaning & Moroz, Irene & Yang, Yong, 2024. "A joint image encryption based on a memristive Rulkov neuron with controllable multistability and compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis D. Espino-Mandujano & Rogelio Hasimoto-Beltran, 2025. "Spin-Wheel: A Fast and Secure Chaotic Encryption System with Data Integrity Detection," Mathematics, MDPI, vol. 13(11), pages 1-19, May.
    2. J. Alberto Conejero & Carlos Lizama & David Quijada, 2025. "Dynamical Properties for a Unified Class of One-Dimensional Discrete Maps," Mathematics, MDPI, vol. 13(3), pages 1-17, February.
    3. Saleem Alsaraireh & Ashraf Ahmad & Yousef AbuHour, 2025. "New Step in Lightweight Medical Image Encryption and Authenticity," Mathematics, MDPI, vol. 13(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Qianqian & Qu, Shaocheng & An, Xinlei & Wei, Ziming & Zhang, Chen, 2024. "Three-dimensional m-HR neuron model and its application in medical image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    2. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Zhou, Mingjie & Li, Guodong & Pan, Hepeng & Song, Xiaoming, 2025. "Discrete memristive hyperchaotic map with heterogeneous and homogeneous multistability and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    4. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    6. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    7. Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Dynamics and implementation of a functional neuron model with hyperchaotic behavior under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    8. Deng, Yue & Zhang, Shuting & Yuan, Fang & Li, Yuxia & Wang, Guangyi, 2025. "Reservoir computing system using discrete memristor for chaotic temporal signal processing," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    9. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Li Zhang & Wuyin Jin & Guolong Chen, 2025. "Amplitude control and offset boosting of motion in the neuron-driven mechanical arm," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(4), pages 1-13, April.
    11. Yu Liu & Yan Zhou & Biyao Guo, 2023. "Hopf Bifurcation, Periodic Solutions, and Control of a New 4D Hyperchaotic System," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    12. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Man, Zhenlong, 2023. "Biometric information security based on double chaotic rotating diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Shi, Wei & Min, Fuhong & Yang, Songtao, 2024. "Bifurcation dynamics and FPGA implementation of coupled Fitzhugh-Nagumo neuronal system," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    15. Minglin Ma & Kangling Xiong & Zhijun Li & Yichuang Sun, 2023. "Dynamic Behavior Analysis and Synchronization of Memristor-Coupled Heterogeneous Discrete Neural Networks," Mathematics, MDPI, vol. 11(2), pages 1-13, January.
    16. Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    17. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    18. Wan, Qiuzhen & Li, Fei & Chen, Simiao & Yang, Qiao, 2023. "Symmetric multi-scroll attractors in magnetized Hopfield neural network under pulse controlled memristor and pulse current stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    19. Xu, Wanjiang & Shi, Xuerong & Jiang, Haibo & Yu, Jianjiang & Zhang, Liping & Zhuang, Lizhou & Wang, Zuolei, 2024. "A simple 4D no-equilibrium chaotic system with only one quadratic term and its application in pseudo-random number generator," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Bao, Bocheng & Chen, Liuhui & Bao, Han & Chen, Mo & Xu, Quan, 2024. "Bifurcations to bursting oscillations in memristor-based FitzHugh-Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3917-:d:1542198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.