Author
Listed:
- Luis D. Espino-Mandujano
(Center for Research in Mathematics (CIMAT), Guanajuato 36240, Mexico
These authors contributed equally to this work.)
- Rogelio Hasimoto-Beltran
(Center for Research in Mathematics (CIMAT), Guanajuato 36240, Mexico
These authors contributed equally to this work.)
Abstract
The increasing demand for real-time multimedia communications has driven the need for highly secure and computationally efficient encryption schemes. In this work, we present a novel chaos-based encryption system that provides remarkable levels of security and performance. It leverages the benefits of applying fast-to-evaluate chaotic maps, along with a 2-Dimensional Look-Up Table approach (2D-LUT), and simple but powerful periodic perturbations. The foundation of our encryption system is a Pseudo-Random Number Generator (PRNG) that consists of a fully connected random graph with M vertices representing chaotic maps that populate the 2D-LUT. In every iteration of the system, one of the M chaotic maps in the graph and the corresponding trajectories are randomly selected from the 2D-LUT using an emulated spin-wheel picker game. This approach exacerbates the complexity in the event of an attack, since the trajectories may come from the same or totally different maps in a non-sequential time order. We additionally perform two levels of perturbation, at the map and trajectory level. The first perturbation (map level) produces new trajectories that are retrieved from the 2D-LUT in non-sequential order and with different initial conditions. The second perturbation applies a p-point crossover scheme to combine a pair of trajectories retrieved from the 2D-LUT and used in the ciphering process, providing higher levels of security. As a final process in our methodology, we implemented a simple packet-based data integrity scheme that detects with high probability if the received information has been modified (for example, by a man-in-the-middle attack). Our results show that our proposed encryption scheme is robust to common cryptanalysis attacks, providing high levels of security and confidentiality while supporting high processing speeds on the order of gigabits per second. To the best of our knowledge, our chaotic cipher implementation is the fastest reported in the literature.
Suggested Citation
Luis D. Espino-Mandujano & Rogelio Hasimoto-Beltran, 2025.
"Spin-Wheel: A Fast and Secure Chaotic Encryption System with Data Integrity Detection,"
Mathematics, MDPI, vol. 13(11), pages 1-19, May.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:11:p:1712-:d:1662678
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1712-:d:1662678. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.