IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077924015388.html
   My bibliography  Save this article

A novel 6D four-wing memristive hyperchaotic system: Generalized fixed-time synchronization and its application in secure image encryption

Author

Listed:
  • Hassan, Ali
  • Zhou, Liangqiang

Abstract

Nonlinear dynamical systems have extensively been studied in the realm of cryptography, yet the use of high-dimensional memristive chaotic systems with fixed time synchronization for secure communications remains underexplored, ensuring large key space and strong resistance to security threats. In this paper, we present a novel 6D memristive hyperchaotic system by incorporating a flux-controlled memristor into a five-dimensional continuous chaotic system; surprisingly, it shows a four-wing attractor. The chaotic dynamics of the system are investigated by employing Lyapunov exponents, bifurcation diagrams, Poincaré maps, and sensitivity to initial conditions, which verify its hyperchaotic phase. Additionally, we realize generalized fixed-time synchronization of our system based on Lyapunov stability theory and the theory of fixed-time with a non-identical 6D hyperchaotic system. This approach derives synchronization techniques in higher-dimensional systems and shows their possible use for applications in cryptography. Furthermore, we proposed an effective image encryption algorithm using chaos theory and DNA computing, followed by a comparative performance analysis.

Suggested Citation

  • Hassan, Ali & Zhou, Liangqiang, 2025. "A novel 6D four-wing memristive hyperchaotic system: Generalized fixed-time synchronization and its application in secure image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077924015388
    DOI: 10.1016/j.chaos.2024.115986
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924015388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Su, Yining & Wang, Xingyuan, 2022. "A robust visual image encryption scheme based on controlled quantum walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    2. Zhang, Shijie & Liu, Lingfeng, 2021. "A novel image encryption algorithm based on SPWLCM and DNA coding," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 723-744.
    3. Lili Wu & Dongyun Wang & Chunwei Zhang & Ardashir Mohammadzadeh, 2022. "Chaotic Synchronization in Mobile Robots," Mathematics, MDPI, vol. 10(23), pages 1-15, December.
    4. Zou, Chengye & Wang, Xingyuan & Zhou, Changjun & Xu, Shujuan & Huang, Chun, 2022. "A novel image encryption algorithm based on DNA strand exchange and diffusion," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Yan, Shaohui & Gu, Binxian & Wang, Ertong & Ren, Yu, 2023. "Finite-time synchronization of multi-scroll hyperchaotic system and its application in image encryption," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 391-409.
    6. Fei Yu & Li Liu & Binyong He & Yuanyuan Huang & Changqiong Shi & Shuo Cai & Yun Song & Sichun Du & Qiuzhen Wan, 2019. "Analysis and FPGA Realization of a Novel 5D Hyperchaotic Four-Wing Memristive System, Active Control Synchronization, and Secure Communication Application," Complexity, Hindawi, vol. 2019, pages 1-18, November.
    7. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    8. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Bezerra, João Inácio Moreira & Machado, Gustavo & Molter, Alexandre & Soares, Rafael Iankowski & Camargo, Vinícius, 2023. "A novel simultaneous permutation–diffusion image encryption scheme based on a discrete space map," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Xin, Zeng-Jun & Lai, Qiang, 2024. "Dynamical investigation and encryption application of a new multiscroll memristive chaotic system with rich offset boosting features," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    11. Wang, Huanqing & Ai, Yingdong, 2022. "Adaptive fixed-time control and synchronization for hyperchaotic Lü systems," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    12. Huiyan Zhong & Guodong Li & Xiangliang Xu & Xiaoming Song, 2022. "Image Encryption Algorithm Based on a Novel Wide-Range Discrete Hyperchaotic Map," Mathematics, MDPI, vol. 10(15), pages 1-23, July.
    13. Shaofang Wang & Jingguo Pan & Yanrong Cui & Zhongju Chen & Wei Zhan, 2024. "Fast Color Image Encryption Algorithm Based on DNA Coding and Multi-Chaotic Systems," Mathematics, MDPI, vol. 12(20), pages 1-18, October.
    14. Yu, Jinwei & Xie, Wei & Zhong, Zhenyu & Wang, Huan, 2022. "Image encryption algorithm based on hyperchaotic system and a new DNA sequence operation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqiang Zhang & Mi Liu & Xiaochang Yang, 2023. "Color Image Encryption Algorithm Based on Cross-Spiral Transformation and Zone Diffusion," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    2. Yan, Shaohui & Wu, Xinyu & Jiang, Jiawei, 2025. "Dynamics analysis and predefined-time sliding mode synchronization of multi-scroll systems based on a single memristor model," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    3. Zhao, Mingjie & Li, Lixiang & Yuan, Zheng, 2024. "A multi-image encryption scheme based on a new n-dimensional chaotic model and eight-base DNA," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    4. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    5. Rong, Xianwei & Chedjou, Jean Chamberlain & Yu, Xiaoyan & Shukhratovich, Makhkamov Bakhtiyor & Jiang, Donghua & Kengne, Jacques, 2024. "A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    6. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    9. Fevrier Valdez & Oscar Castillo & Patricia Melin, 2025. "A Bibliometric Review of Type-3 Fuzzy Logic Applications," Mathematics, MDPI, vol. 13(3), pages 1-16, January.
    10. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    11. Guidong Zhang & Yanhao Zhao & Yanpei Zheng & Yulin Shen & Jun Huang, 2025. "A Fast Image Encryption Scheme Based on a Four-Dimensional Variable-Parameter Hyperchaotic Map and Cyclic Shift Strategy," Mathematics, MDPI, vol. 13(9), pages 1-30, April.
    12. Shijie Zhang & Lingfeng Liu & Hongyue Xiang, 2021. "A Novel Plain-Text Related Image Encryption Algorithm Based on LB Compound Chaotic Map," Mathematics, MDPI, vol. 9(21), pages 1-25, November.
    13. Qin, Xiaoli & Wang, Cong & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Ye, Lu, 2018. "Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 302-315.
    14. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    16. Zhang, Jie & Zuo, Jiangang & Wang, Meng & Guo, Yan & Xie, Qinggang & Hou, Jinyou, 2024. "Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    17. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    18. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    19. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Karimov, Artur & Babkin, Ivan & Rybin, Vyacheslav & Butusov, Denis, 2024. "Matryoshka multistability: Coexistence of an infinite number of exactly self-similar nested attractors in a fractal phase space," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077924015388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.