IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925002437.html
   My bibliography  Save this article

Reservoir computing system using discrete memristor for chaotic temporal signal processing

Author

Listed:
  • Deng, Yue
  • Zhang, Shuting
  • Yuan, Fang
  • Li, Yuxia
  • Wang, Guangyi

Abstract

Reservoir computing (RC) is a highly efficient neural network for processing temporal signals, primarily due to its significantly lower training cost compared to standard recurrent neural networks. In this work, a novel discrete memristor (DM) model is investigated and a simple two-dimensional chaotic map based on the DM model is presented, in which complex dynamics are simulated. By utilizing this DM-based map as a reservoir, a dynamic DM-based RC system is constructed, and the performance is verified through nonlinear regression and time-series prediction tasks. Our system achieves a high accuracy rate of 99.99 % in the nonlinear recognitions, as well as a low root mean square error of 0.0974 in the time-series prediction of the Logistic map. This work may pave the way for the future development of high-efficiency memristor-based RC systems to handle more complex temporal tasks.

Suggested Citation

  • Deng, Yue & Zhang, Shuting & Yuan, Fang & Li, Yuxia & Wang, Guangyi, 2025. "Reservoir computing system using discrete memristor for chaotic temporal signal processing," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002437
    DOI: 10.1016/j.chaos.2025.116230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Yuexi & Sun, Kehui & He, Shaobo, 2020. "A discrete memristor model and its application in Hénon map," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Choi, Jaesung & Kim, Pilwon, 2020. "Reservoir computing based on quenched chaos," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Daniel J. Gauthier & Erik Bollt & Aaron Griffith & Wendson A. S. Barbosa, 2021. "Next generation reservoir computing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    6. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Yanan Zhong & Jianshi Tang & Xinyi Li & Bin Gao & He Qian & Huaqiang Wu, 2021. "Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Fan, Zhenyi & Zhang, Chenkai & Wang, Yiming & Du, Baoxiang, 2023. "Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Zhong, Huiyan & Li, Guodong & Xu, Xiangliang, 2022. "A generic voltage-controlled discrete memristor model and its application in chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Wang, Qiao & Tian, Zean & Wu, Xianming & Li, Kunshuai & Sang, Haiwei & Yu, Xiong, 2024. "A 5D super-extreme-multistability hyperchaotic map based on parallel-cascaded memristors," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    5. Feali, Mohammad Saeed, 2025. "Chaotic dynamics of discrete memristor-coupled Sinh map," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    6. Zhou, Mingjie & Li, Guodong & Pan, Hepeng & Song, Xiaoming, 2025. "Discrete memristive hyperchaotic map with heterogeneous and homogeneous multistability and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    7. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    8. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    10. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Innocenti, Giacomo & Tesi, Alberto & Di Marco, Mauro & Forti, Mauro, 2024. "First integrals can explain coexistence of attractors, multistability, and loss of ideality in circuits with memristors," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Hussan, Iram & Zhao, Manyu & Zhang, Xu, 2025. "Two-memristor-based maps with infinitely many hyperchaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    16. Yuchun Zhang & Lin Liu & Bin Tu & Bin Cui & Jiahui Guo & Xing Zhao & Jingyu Wang & Yong Yan, 2023. "An artificial synapse based on molecular junctions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Bao, H. & Gu, Y. & Xu, Q. & Zhang, X. & Bao, B., 2022. "Parallel bi-memristor hyperchaotic map with extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    18. Zhang, Shaohua & Zhang, Hongli & Wang, Cong & Lin, Hairong, 2024. "Bionic modeling and dynamics analysis of heterogeneous brain regions connected by memristive synaptic crosstalk," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    19. Zhang, Shaohua & Wang, Cong & Zhang, Hongli & Lin, Hairong, 2024. "Collective dynamics of adaptive memristor synapse-cascaded neural networks based on energy flow," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    20. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.