IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000559.html
   My bibliography  Save this article

First integrals can explain coexistence of attractors, multistability, and loss of ideality in circuits with memristors

Author

Listed:
  • Innocenti, Giacomo
  • Tesi, Alberto
  • Di Marco, Mauro
  • Forti, Mauro

Abstract

In this paper a systematic procedure to compute the first integrals of the dynamics of a circuit with an ideal memristor is presented. In this perspective, the state space results in a layered structure of manifolds generated by first integrals, which are associated, via the choice of the initial conditions, to different exhibited behaviors. This feature turns out to be a powerful investigation tool, and it can be used to disclose the coexistence of attractors and the so called “extreme multistability,” which are typical of the circuits with ideal memristors. The first integrals can also be exploited to study the energetic behavior of both the circuit and of the memristor itself. How to extend these results to the other ideal memelements and to more complex circuit configurations is shortly mentioned. Moreover, a class of ideal memristive devices capable of inducing the same first integrals layered in the state space is introduced. Finally, a mechanism for the loss of the ideality is conceived in terms of spoiling the first integrals structure, which makes it possible to develop a non-ideal memristive model. Notably, this latter can be interpreted as an ideal memristive device subject to a dynamic nonlinear feedback, thus highlighting that the non-ideal model is still affected by the first integrals influence, and justifying the importance of studying the ideal devices in order to understand the non-ideal ones.

Suggested Citation

  • Innocenti, Giacomo & Tesi, Alberto & Di Marco, Mauro & Forti, Mauro, 2024. "First integrals can explain coexistence of attractors, multistability, and loss of ideality in circuits with memristors," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000559
    DOI: 10.1016/j.chaos.2024.114504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.