IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012530.html
   My bibliography  Save this article

Three-dimensional m-HR neuron model and its application in medical image encryption

Author

Listed:
  • Shi, Qianqian
  • Qu, Shaocheng
  • An, Xinlei
  • Wei, Ziming
  • Zhang, Chen

Abstract

Theoretical research on neuronal dynamics is crucial for elucidating neural functions of the human brain, and electromagnetic fields significantly influence the electrical activity of neurons. This paper proposes a flux-controlled memristor and analyzes its frequency and amplitude dependent pinched hysteresis loops. Considering the electromagnetic induction effect of the memristor, a novel memristive Hindmarsh–Rose (m-HR) neuron model is constructed, which exhibits the coexistence of asymmetric hidden attractors. The theoretical analyses and simulation results on the Hamilton energy demonstrate that the energy evolution of the m-HR neuron model is predominantly associated with state variables. Subsequently, the intricate discharge patterns of the model are investigated through one-parameter and two-parameter bifurcation analysis, accompanied by complexity assessment. Based on the model, a medical image encryption scheme is devised, capable of simultaneously encrypting multiple images of arbitrary size and type. Additionally, the proposed cross-plane scrambling scheme can effectively minimize pixel correlation. Finally, the security tests indicate that the encryption scheme possesses high security and can effectively withstand diverse attacks.

Suggested Citation

  • Shi, Qianqian & Qu, Shaocheng & An, Xinlei & Wei, Ziming & Zhang, Chen, 2024. "Three-dimensional m-HR neuron model and its application in medical image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012530
    DOI: 10.1016/j.chaos.2024.115701
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Qiang & Lai, Cong & Zhang, Hui & Li, Chunbiao, 2022. "Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Yucheng Chen & Chunming Tang & Zongxiang Yi, 2020. "A Novel Image Encryption Scheme Based on PWLCM and Standard Map," Complexity, Hindawi, vol. 2020, pages 1-23, December.
    3. Wu, Fuqiang & Ma, Jun & Zhang, Ge, 2019. "A new neuron model under electromagnetic field," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 590-599.
    4. Zuo, Jiangang & Zhang, Jie & Wei, Xiaodong & Yang, Liu & Cheng, Nana & Lv, Jiliang, 2024. "Design and application of multisroll conservative chaotic system with no-equilibrium, dynamics analysis, circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    5. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2024. "Dynamics and stability of neural systems with indirect interactions involved energy levels," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    6. Zhang, Sen & Li, Yongxin & Lu, Daorong & Li, Chunbiao, 2024. "A novel memristive synapse-coupled ring neural network with countless attractors and its application," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    7. Tabekoueng Njitacke, Zeric & Tsafack, Nestor & Ramakrishnan, Balamurali & Rajagopal, Kartikeyan & Kengne, Jacques & Awrejcewicz, Jan, 2021. "Complex dynamics from heterogeneous coupling and electromagnetic effect on two neurons: Application in images encryption," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Li, Yongxin & Li, Chunbiao & Li, Yaning & Moroz, Irene & Yang, Yong, 2024. "A joint image encryption based on a memristive Rulkov neuron with controllable multistability and compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Yan, Shaohui & Jiang, Defeng & Cui, Yu & Zhang, Hanbing & Li, Lin & Jiang, Jiawei, 2024. "A fractional-order hyperchaotic system that is period in integer-order case and its application in a novel high-quality color image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Zhang, Jie & Zuo, Jiangang & Wang, Meng & Guo, Yan & Xie, Qinggang & Hou, Jinyou, 2024. "Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    11. Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    12. An, Xinlei & Qiao, Shuai, 2021. "The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Li, Xuejun & Mou, Jun & Banerjee, Santo & Wang, Zhisen & Cao, Yinghong, 2022. "Design and DSP implementation of a fractional-order detuned laser hyperchaotic circuit with applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Bocheng Bao & Aihuang Hu & Han Bao & Quan Xu & Mo Chen & Huagan Wu, 2018. "Three-Dimensional Memristive Hindmarsh–Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors," Complexity, Hindawi, vol. 2018, pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Dynamics and implementation of a functional neuron model with hyperchaotic behavior under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    3. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    4. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Xu, Quan & Wang, Yiteng & Wu, Huagan & Chen, Mo & Chen, Bei, 2024. "Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin-Huxley circuit," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    7. Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Xu, Quan & Wang, Kai & Feng, Chengtao & Fan, Weiwei & Wang, Ning, 2024. "Dynamical effects of low-frequency and high-frequency current stimuli in a memristive Morris–Lecar neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    9. Yuan, Fang & Qi, Yaning & Yu, Xiangcheng & Deng, Yue, 2024. "Design and analysis of grid attractors in memristive Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    10. Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    11. Wei Feng & Jiaxin Yang & Xiangyu Zhao & Zhentao Qin & Jing Zhang & Zhengguo Zhu & Heping Wen & Kun Qian, 2024. "A Novel Multi-Channel Image Encryption Algorithm Leveraging Pixel Reorganization and Hyperchaotic Maps," Mathematics, MDPI, vol. 12(24), pages 1-26, December.
    12. Jiang, Donghua & Njitacke, Zeric Tabekoueng & Long, Guoqiang & Awrejcewicz, Jan & Zheng, Mingwen & Cai, Lei, 2024. "Novel Tabu learning neuron model with variable activation gradient and its application to secure healthcare," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    13. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Yuzhou Xi & Yu Ning & Jie Jin & Fei Yu, 2024. "A Dynamic Hill Cipher with Arnold Scrambling Technique for Medical Images Encryption," Mathematics, MDPI, vol. 12(24), pages 1-22, December.
    15. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    17. Qin, Bo & Zhang, Ying, 2024. "Comprehensive analysis of the mechanism of sensitivity to initial conditions and fractal basins of attraction in a novel variable-distance magnetic pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    18. Xu, Quan & Fang, Yujian & Wu, Huagan & Bao, Han & Wang, Ning, 2024. "Firing patterns and fast–slow dynamics in an N-type LAM-based FitzHugh–Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    19. Hu, Tingyao & Luo, Shaohua & Zhang, Ya & Deng, Guangwei & Ouakad, Hassen M., 2024. "Dynamical analysis and event-triggered neural backstepping control of two Duffing-type MEMS gyros with state constraints," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    20. Mayada Abualhomos & Abderrahmane Abbes & Gharib Mousa Gharib & Abdallah Shihadeh & Maha S. Al Soudi & Ahmed Atallah Alsaraireh & Adel Ouannas, 2023. "Bifurcation, Hidden Chaos, Entropy and Control in Hénon-Based Fractional Memristor Map with Commensurate and Incommensurate Orders," Mathematics, MDPI, vol. 11(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.