IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924011846.html
   My bibliography  Save this article

Novel Tabu learning neuron model with variable activation gradient and its application to secure healthcare

Author

Listed:
  • Jiang, Donghua
  • Njitacke, Zeric Tabekoueng
  • Long, Guoqiang
  • Awrejcewicz, Jan
  • Zheng, Mingwen
  • Cai, Lei

Abstract

Currently, the latest advances in artificial neural networks have deeply affected various aspects of the general public. To this end, a new Tabu Learning Neuron (TLN) model with variable activation gradients is proposed in this paper. Specifically, its kinetic behaviors and intrinsic properties are investigated by means of a two-parameter Lyapunov exponential spectrum, a bifurcation and an equilibrium point analysis. Moreover, its electronic circuit built in the PSpice environment agrees with the numerical results. Besides, in respect of its engineering applications, a novel data compression-encryption scheme based on the new TLN model, matrix factorization theory and compressive sensing technology is introduced for providing a secure data exchange environment in the healthcare community. Finally, performance evaluation indicates that the proposed cryptography scheme has remarkable advantages in terms of reconstruction quality and security.

Suggested Citation

  • Jiang, Donghua & Njitacke, Zeric Tabekoueng & Long, Guoqiang & Awrejcewicz, Jan & Zheng, Mingwen & Cai, Lei, 2024. "Novel Tabu learning neuron model with variable activation gradient and its application to secure healthcare," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011846
    DOI: 10.1016/j.chaos.2024.115632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    2. Chen, Chengjie & Min, Fuhong & Zhang, Yunzhen & Bao, Han, 2023. "ReLU-type Hopfield neural network with analog hardware implementation," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    4. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. G. Anzellotti & R. Battiti & I. Lazzizzera & G. Soncini & A. Zorat & A. Sartori & G. Tecchiolli & P. Lee, 1995. "Totem: A Highly Parallel Chip For Triggering Applications With Inductive Learning Based On The Reactive Tabu Search," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 555-560.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Ji, Yansu & Mao, Xiaochen, 2024. "Fast and slow dynamical behaviors of delayed-coupled thermosensitive neurons under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    3. Shi, Qianqian & Qu, Shaocheng & An, Xinlei & Wei, Ziming & Zhang, Chen, 2024. "Three-dimensional m-HR neuron model and its application in medical image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    4. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    5. Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Dynamics and implementation of a functional neuron model with hyperchaotic behavior under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    6. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    7. Chen, Yixuan & Guo, Qun & Zhang, Xiaofeng & Wang, Chunni, 2024. "Numerical approach and physical description for a two-capacitive neuron and its adaptive network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    8. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Lai, Qiang & Hua, Hanqiang & Zhao, Xiao-Wen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "Image encryption using fission diffusion process and a new hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Yang, Feifei & Song, Xinlin & Yu, Zhenhua, 2024. "Dynamics of a functional neuron model with double membranes," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    11. Zou, Chengye & Shang, Yubao & Yang, Yongwei & Zhou, Changjun & Liu, Yunong, 2024. "A novel image encryption algorithm with anti-tampering attack capability," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    12. Luo, Yuyao & Fan, Chunlei & Xu, Chengbin & Li, Xinyu, 2024. "Design and FPGA implementation of a high-speed PRNG based on an n-D non-degenerate chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    13. Ding, Dawei & Zhu, Haifei & Zhang, Hongwei & Yang, Zongli & Xie, Dong, 2024. "An n-dimensional polynomial modulo chaotic map with controllable range of Lyapunov exponents and its application in color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    14. Long, Guoqiang & Chai, Xiuli & Gan, Zhihua & Jiang, Donghua & He, Xin & Sun, Mengge, 2023. "Exploiting one-dimensional exponential Chebyshev chaotic map and matching embedding for visually meaningful image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    15. Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    16. Zhang, Yagang & Kong, Xue & Wang, Jingchao & Wang, Hui & Cheng, Xiaodan, 2024. "Wind power forecasting system with data enhancement and algorithm improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    17. Na Li & Ziyiyang Wang & Xin Lin & Haotian Sheng, 2024. "Prediction of delivery truck arrivals at container terminals: an ensemble deep learning model," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(4), pages 658-684, December.
    18. Othman Abdullah Almatroud & Viet-Thanh Pham & Karthikeyan Rajagopal, 2024. "A Rectified Linear Unit-Based Memristor-Enhanced Morris–Lecar Neuron Model," Mathematics, MDPI, vol. 12(19), pages 1-10, September.
    19. Liu, Lulu & Teng, Lin & Song, Meiping & Wang, Xingyuan, 2024. "Secure multi-image embedded and encrypted of retinal images via SSCS map," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    20. Rajendran, Sangeetha & Kaliyaperumal, Palanivel, 2025. "Prescribed-time synchronization of hyperchaotic fuzzy stochastic PMSM model with an application to secure communications," Applied Mathematics and Computation, Elsevier, vol. 493(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.