IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v166y2023ics0960077922010840.html
   My bibliography  Save this article

Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application

Author

Listed:
  • Lin, Hairong
  • Wang, Chunhua
  • Sun, Jingru
  • Zhang, Xin
  • Sun, Yichuang
  • Iu, Herbert H.C.

Abstract

With the rapid development of artificial intelligence, it has important theoretical and practical significance to construct neural network models and study their dynamical behaviors. This article mainly focuses on the bionic model and chaotic dynamics of the asymmetric neural network as well as its engineering application. We first construct a memristor-coupled asymmetric neural network (MANN) utilizing two asymmetrical sub-neural networks and a coupled multi-piecewise memristor synapse. Then, the chaotic dynamics of the proposed MANN is studied and analyzed by using basic dynamics methods like equilibrium stability, bifurcation diagrams, Lyapunov exponents, and Poincare mappings. Research results show that the proposed MANN exhibits multiple complex dynamical characteristics including infinitely wide hyperchaos with amplitude control, hyperchaotic initial-boosted behavior, and arbitrary number of hyperchaotic multi-structure attractors. More importantly, the phenomena of the infinitely wide hyperchaos and the hyperchaotic multi-structure attractors are observed in neural networks for the first time. Meanwhile, applying the hyperchaotic multi-structure attractors, a color image encryption scheme is designed based on the proposed MANN. Performance analyses show that the designed encryption scheme has some merits in correlation, information entropy, and key sensitivity. Finally, a physical circuit of the MANN is implemented and various typical dynamical behaviors are verified by hardware experiments.

Suggested Citation

  • Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010840
    DOI: 10.1016/j.chaos.2022.112905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922010840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Shaochuan & Wang, Xingyuan & Ye, Xiaolin, 2022. "A new fractional-order chaos system of Hopfield neural network and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Stankevich, N.V. & Kuznetsov, A.P. & Seleznev, E.P., 2021. "Chaos and hyperchaos arising from the destruction of multifrequency tori," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. Wu, Fuqiang & Gu, Huaguang & Jia, Yanbing, 2021. "Bifurcations underlying different excitability transitions modulated by excitatory and inhibitory memristor and chemical autapses," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. Njitacke, Zeric Tabekoueng & Takembo, Clovis Ntahkie & Awrejcewicz, Jan & Fouda, Henri Paul Ekobena & Kengne, Jacques, 2022. "Hamilton energy, complex dynamical analysis and information patterns of a new memristive FitzHugh-Nagumo neural network," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Wang, Ran & Li, Chunbiao & Kong, Sixiao & Jiang, Yicheng & Lei, Tengfei, 2022. "A 3D memristive chaotic system with conditional symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    6. Lai, Qiang & Lai, Cong & Zhang, Hui & Li, Chunbiao, 2022. "Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Wang, Xingyuan & Guan, Nana & Yang, Jingjing, 2021. "Image encryption algorithm with random scrambling based on one-dimensional logistic self-embedding chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Chen, Mo & Ren, Xue & Wu, Huagan & Xu, Quan & Bao, Bocheng, 2020. "Interpreting initial offset boosting via reconstitution in integral domain," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    9. Yu, Fei & Shen, Hui & Zhang, Zinan & Huang, Yuanyuan & Cai, Shuo & Du, Sichun, 2021. "Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Guseinov, D.V. & Matyushkin, I.V. & Chernyaev, N.V. & Mikhaylov, A.N. & Pershin, Y.V., 2021. "Capacitive effects can make memristors chaotic," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Alberto Pascual & Kai-Lian Huang & Julie Neveu & Thomas Préat, 2004. "Brain asymmetry and long-term memory," Nature, Nature, vol. 427(6975), pages 605-606, February.
    12. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    13. Azam, Anam & Aqeel, Muhammad & Sunny, Danish Ali, 2022. "Generation of Multidirectional Mirror Symmetric Multiscroll Chaotic Attractors (MSMCA) in Double Wing Satellite Chaotic System," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Ngamsa Tegnitsap, J.V. & Fotsin, H.B., 2022. "Multistability, transient chaos and hyperchaos, synchronization, and chimera states in wireless magnetically coupled VDPCL oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    15. S.G. Hu & Y. Liu & Z Liu & T.P. Chen & J.J. Wang & Q. Yu & L.J. Deng & Y. Yin & Sumio Hosaka, 2015. "Associative memory realized by a reconfigurable memristive Hopfield neural network," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    16. Hou, Zhangliang & Ma, Jun & Zhan, Xuan & Yang, Lijian & Jia, Ya, 2021. "Estimate the electrical activity in a neuron under depolarization field," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    17. Ding, Dawei & Chen, Xiaoyu & Yang, Zongli & Hu, Yongbing & Wang, Mouyuan & Zhang, Hongwei & Zhang, Xu, 2022. "Coexisting multiple firing behaviors of fractional-order memristor-coupled HR neuron considering synaptic crosstalk and its ARM-based implementation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    18. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zizhao Xie & Jingru Sun & Yiping Tang & Xin Tang & Oluyomi Simpson & Yichuang Sun, 2023. "A K-SVD Based Compressive Sensing Method for Visual Chaotic Image Encryption," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    2. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Adhira, B. & Nagamani, G., 2023. "Exponentially finite-time dissipative discrete state estimator for delayed competitive neural networks via semi-discretization approach," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Wang, Ning & Xu, Dan & Li, Ze & Xu, Quan, 2023. "A general configuration for nonlinear circuit employing current-controlled nonlinearity: Application in Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    6. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    7. Mayada Abualhomos & Abderrahmane Abbes & Gharib Mousa Gharib & Abdallah Shihadeh & Maha S. Al Soudi & Ahmed Atallah Alsaraireh & Adel Ouannas, 2023. "Bifurcation, Hidden Chaos, Entropy and Control in Hénon-Based Fractional Memristor Map with Commensurate and Incommensurate Orders," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    8. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    9. Chen, Mo & Xue, Wanqi & Luo, Xuefeng & Zhang, Yunzhen & Wu, Huagan, 2023. "Effects of coupling memristors on synchronization of two identical memristive Chua's systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    3. Avcı, İbrahim & Lort, Hüseyin & Tatlıcıoğlu, Buğce E., 2023. "Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    6. Jayaraman Venkatesh & Alexander N. Pchelintsev & Anitha Karthikeyan & Fatemeh Parastesh & Sajad Jafari, 2023. "A Fractional-Order Memristive Two-Neuron-Based Hopfield Neuron Network: Dynamical Analysis and Application for Image Encryption," Mathematics, MDPI, vol. 11(21), pages 1-17, October.
    7. Zhenggang Guo & Junjie Wen & Jun Mou, 2022. "Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    8. Wu, Huagan & Bian, Yixuan & Zhang, Yunzhen & Guo, Yixuan & Xu, Quan & Chen, Mo, 2023. "Multi-stable states and synchronicity of a cellular neural network with memristive activation function," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Chen, Mo & Xue, Wanqi & Luo, Xuefeng & Zhang, Yunzhen & Wu, Huagan, 2023. "Effects of coupling memristors on synchronization of two identical memristive Chua's systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    11. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Ma, Tao & Mou, Jun & Banerjee, Santo & Cao, Yinghong, 2023. "Analysis of the functional behavior of fractional-order discrete neuron under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    14. Xiu, Chunbo & Fang, Jingyao & Ma, Xin, 2022. "Design and circuit implementations of multimemristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    15. Wan, Qiuzhen & Li, Fei & Chen, Simiao & Yang, Qiao, 2023. "Symmetric multi-scroll attractors in magnetized Hopfield neural network under pulse controlled memristor and pulse current stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Lai, Qiang & Chen, Zhijie, 2023. "Dynamical analysis and finite-time synchronization of grid-scroll memristive chaotic system without equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    17. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Yan, Dengwei & Wang, Lidan & Duan, Shukai & Chen, Jiaojiao & Chen, Jiahao, 2021. "Chaotic Attractors Generated by a Memristor-Based Chaotic System and Julia Fractal," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.