IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923012043.html
   My bibliography  Save this article

Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model

Author

Listed:
  • Avcı, İbrahim
  • Lort, Hüseyin
  • Tatlıcıoğlu, Buğce E.

Abstract

This paper investigates the dynamics of Hopfield neural networks involving fractal–fractional derivatives. The incorporation of fractal–fractional derivatives in the neural network framework brings forth novel modeling capabilities, capturing nonlocal dependencies, complex scaling behaviors, and memory effects. The aim of this study is to provide a comprehensive analysis of the dynamics of Hopfield neural networks with fractal–fractional derivatives, including the existence and uniqueness of solutions, stability properties, and numerical analysis techniques. Numerical analysis techniques, including the Adams–Bashforth method, are employed to accurately simulate the fractal–fractional Hopfield neural network system. Moreover, the obtained numerical data serves as validation for developing predictions using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) neural network methods. The findings contribute to the advancement of both fractional calculus and neural network theory, providing valuable insights for theoretical investigations and practical applications in complex systems analysis.

Suggested Citation

  • Avcı, İbrahim & Lort, Hüseyin & Tatlıcıoğlu, Buğce E., 2023. "Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923012043
    DOI: 10.1016/j.chaos.2023.114302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923012043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.