IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0313914.html
   My bibliography  Save this article

Applying fractional calculus to malware spread: A fractal-based approach to threat analysis

Author

Listed:
  • Nausheen Razi
  • Muhammad Bilal Riaz
  • Ambreen Bano
  • Tayyab Kamran
  • Umar Ishtiaq
  • Anum Shafiq

Abstract

Malware is a common word in modern era. Everyone using computer is aware of it. Some users have to face the problem known as Cyber crimes. Nobody can survive without use of modern technologies based on computer networking. To avoid threat of malware, different companies provide antivirus strategies on a high cost. To prevent the data and keep privacy, companies using computers have to buy these antivirus programs (software). Software varies due to types of malware and is developed on structure of malware with a deep insight on behavior of nodes. We selected a mathematical malware propagation model having variable infection rate. We were interested in examining the impact of memory effects in this dynamical system in the sense of fractal fractional (FF) derivatives. In this paper, theoretical analysis is performed by concepts of fixed point theory. Existence, uniqueness and stability conditions are investigated for FF model. Numerical algorithm based on Lagrange two points interpolation polynomial is formed and simulation is done using Matlab R2016a on the deterministic model. We see the impact of different FF orders using power law kernel. Sensitivity analysis of different parameters such as initial infection rate, variable adjustment to sensitivity of infected nodes, immune rate of antivirus strategies and loss rate of immunity of removed nodes is investigated under FF model and is compared with classical. On investigation, we find that FF model describes the effects of memory on nodes in detail. Antivirus software can be developed considering the effect of FF orders and parameters to reduce persistence and eradication of infection. Small changes cause significant perturbation in infected nodes and malware can be driven into passive mode by understanding its propagation by FF derivatives and may take necessary actions to prevent the disaster caused by cyber crimes.

Suggested Citation

  • Nausheen Razi & Muhammad Bilal Riaz & Ambreen Bano & Tayyab Kamran & Umar Ishtiaq & Anum Shafiq, 2025. "Applying fractional calculus to malware spread: A fractal-based approach to threat analysis," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-35, January.
  • Handle: RePEc:plo:pone00:0313914
    DOI: 10.1371/journal.pone.0313914
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313914
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0313914&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0313914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Partohaghighi & Abdullahi Yusuf & Yeliz Karaca & Yong-Min Li & Tarek F. Ibrahim & B. A. Younis & Bahaa Saleh & Ayman A. Aly, 2022. "A New Fractal Fractional Modeling Of The Computer Viruses System," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(05), pages 1-19, August.
    2. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    3. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    4. Avcı, İbrahim & Hussain, Azhar & Kanwal, Tanzeela, 2023. "Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avcı, İbrahim & Lort, Hüseyin & Tatlıcıoğlu, Buğce E., 2023. "Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Atangana, Abdon & Shafiq, Anum, 2019. "Differential and integral operators with constant fractional order and variable fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 226-243.
    4. Martynyuk, Anatoliy A. & Stamov, Gani Tr. & Stamova, Ivanka M., 2020. "Fractional-like Hukuhara derivatives in the theory of set-valued differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Mahmood, Tariq & ur Rahman, Mati & Arfan, Muhammad & Kayani, Sadaf-Ilyas & Sun, Mei, 2023. "Mathematical study of Algae as a bio-fertilizer using fractal–fractional dynamic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 207-222.
    8. Zhang, Tianxian & Zhao, Yongqi & Xu, Xiangliang & Wu, Si & Gu, Yujuan, 2024. "Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Farman, Muhammad & Ahmad, Aqeel & Zehra, Anum & Nisar, Kottakkaran Sooppy & Hincal, Evren & Akgul, Ali, 2024. "Analysis and controllability of diabetes model for experimental data by using fractional operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 133-148.
    10. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    11. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    13. Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.
    14. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    15. Jiong Weng & Xiaojing Liu & Youhe Zhou & Jizeng Wang, 2022. "An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
    16. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    17. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    18. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Tajani, Asmae & El Alaoui, Fatima-Zahrae & Boutoulout, Ali, 2022. "Regional boundary controllability of semilinear subdiffusion Caputo fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 481-496.
    20. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0313914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.