IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v154y2022ics0960077921009760.html
   My bibliography  Save this article

Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems

Author

Listed:
  • Amiri, Pari
  • Afshari, Hojjat

Abstract

Our purpose in this paper is to present some common fixed point results for αC-admissible multi-valued mappings which have greatest lower bound property. By utilizing an extended contraction condition that is more generally of than other contractions that be used in this literature, we deduce some convenient results in complex-valued double controlled metric spaces. Also, we give some significant applications of these results to the existence of the solution of Riemann–Liouville and Atangana–Baleanufractional integral inclusion systems.

Suggested Citation

  • Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921009760
    DOI: 10.1016/j.chaos.2021.111622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921009760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Atangana, Abdon, 2016. "On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 948-956.
    3. Panda, Sumati Kumari & Abdeljawad, Thabet & Ravichandran, C., 2020. "A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Marwan Amin Kutbi & Akbar Azam & Jamshaid Ahmad & Cristina Di Bari, 2013. "Some Common Coupled Fixed Point Results for Generalized Contraction in Complex-Valued Metric Spaces," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, June.
    5. Nabil Mlaiki & Hassen Aydi & Nizar Souayah & Thabet Abdeljawad, 2018. "Controlled Metric Type Spaces and the Related Contraction Principle," Mathematics, MDPI, vol. 6(10), pages 1-7, October.
    6. Danane, Jaouad & Allali, Karam & Hammouch, Zakia, 2020. "Mathematical analysis of a fractional differential model of HBV infection with antibody immune response," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    8. Ravichandran, C. & Logeswari, K. & Jarad, Fahd, 2019. "New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 194-200.
    9. Muhammad Suhail Aslam & Monica Felicia Bota & Mohammad S. R. Chowdhury & Liliana Guran & Naeem Saleem, 2021. "Common Fixed Points Technique for Existence of a Solution of Urysohn Type Integral Equations System in Complex Valued b -Metric Spaces," Mathematics, MDPI, vol. 9(4), pages 1-18, February.
    10. Badr Alqahtani & Andreea Fulga & Erdal Karapınar, 2018. "Non-Unique Fixed Point Results in Extended B -Metric Space," Mathematics, MDPI, vol. 6(5), pages 1-11, May.
    11. Tayyab Kamran & Maria Samreen & Qurat UL Ain, 2017. "A Generalization of b -Metric Space and Some Fixed Point Theorems," Mathematics, MDPI, vol. 5(2), pages 1-7, March.
    12. Dokuyucu, Mustafa Ali & Dutta, Hemen, 2020. "A fractional order model for Ebola Virus with the new Caputo fractional derivative without singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    13. N. Mlaiki & K. Abodayeh & H. Aydi & T. Abdeljawad & M. Abuloha, 2018. "Rectangular Metric-Like Type Spaces and Related Fixed Points," Journal of Mathematics, Hindawi, vol. 2018, pages 1-7, September.
    14. Abdo, Mohammed S. & Shah, Kamal & Wahash, Hanan A. & Panchal, Satish K., 2020. "On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    15. Jamshaid Ahmad & Chakkrid Klin-Eam & Akbar Azam, 2013. "Common Fixed Points for Multivalued Mappings in Complex Valued Metric Spaces with Applications," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-12, December.
    16. Muhib Abuloha & Doaa Rizk & Kamaleldin Abodayeh & Nabil Mlaiki & Thabet Abdeljawad & Naeem Saleem, 2021. "New Results in Controlled Metric Type Spaces," Journal of Mathematics, Hindawi, vol. 2021, pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiri, Pari & Samei, Mohammad Esmael, 2022. "Existence of Urysohn and Atangana–Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    7. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    8. Abdullah Eqal Al-Mazrooei & Jamshaid Ahmad, 2022. "Fixed Point Results in Controlled Metric Spaces with Applications," Mathematics, MDPI, vol. 10(3), pages 1-15, February.
    9. Mohammed, Pshtiwan Othman & Kürt, Cemaliye & Abdeljawad, Thabet, 2022. "Bivariate discrete Mittag-Leffler functions with associated discrete fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    10. Mallika Arjunan, M. & Hamiaz, A. & Kavitha, V., 2021. "Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    11. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    12. Naeem Saleem & Salman Furqan & Kinda Abuasbeh & Muath Awadalla, 2023. "Fuzzy Triple Controlled Metric like Spaces with Applications," Mathematics, MDPI, vol. 11(6), pages 1-30, March.
    13. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    14. Bedi, Pallavi & Kumar, Anoop & Khan, Aziz, 2021. "Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Coronel-Escamilla, A. & Gómez-Aguilar, J.F. & López-López, M.G. & Alvarado-Martínez, V.M. & Guerrero-Ramírez, G.V., 2016. "Triple pendulum model involving fractional derivatives with different kernels," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 248-261.
    16. Kumar, Ashish & Pandey, Dwijendra N., 2020. "Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    17. Logeswari, K. & Ravichandran, C., 2020. "A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    18. Balasubramaniam, P., 2021. "Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Ali, Farhad & Murtaza, Saqib & Sheikh, Nadeem Ahmad & Khan, Ilyas, 2019. "Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana–Balaenu and Caputo–Fabrizio fractional models," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 1-15.
    20. Fetecau, C. & Zafar, A.A. & Vieru, D. & Awrejcewicz, J., 2020. "Hydromagnetic flow over a moving plate of second grade fluids with time fractional derivatives having non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921009760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.