IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004198.html
   My bibliography  Save this article

A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting

Author

Listed:
  • Lin, Hairong
  • Wang, Chunhua
  • Du, Sichun
  • Yao, Wei
  • Sun, Yichuang

Abstract

Memristors are commonly used to construct memristive chaotic systems with complex dynamics because of their strong nonlinearity and unique memory effects. In this paper, a simplified multi-piecewise memristor is applied for designing a family of memristive multibutterfly chaotic systems (MMBCSs). By coupling different numbers of the simplified multi-piecewise memristors into a modified Sprott C system, three MMBCSs are constructed. Theoretical analysis and numerical simulations show that the three MMBCSs can not only generate connected 1D(direction)-, 2D(plane)-, and 3D(space)-multibutterfly chaotic attractors (MBCAs), respectively, but also can respectively produce unconnected 1D-, 2D-, and 3D-MBCAs. Also, the number and position of butterfly attractors can be easily controlled by switching the memristor’s integer parameters and initial states, respectively. More importantly, the constructed three MMBCSs exhibit different initial-based offset boosting including 1D-, 2D-, and 3D-boosting behaviors, respectively. Especially, the 3D-initial-offset behavior is found in chaotic systems at the first time. Furthermore, we further implement the physical circuit of the three MMBCSs, and various typical dynamical behaviors are demonstrated by hardware experiments and Multisim simulations. Finally, a medical image encryption solution for online medical treatment is designed based on the proposed MMBCSs.

Suggested Citation

  • Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004198
    DOI: 10.1016/j.chaos.2023.113518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qiujie & Hong, Qinghui & Liu, Xiaoyang & Wang, Xiaoping & Zeng, Zhigang, 2020. "A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Sahoo, Shilalipi & Roy, Binoy Krishna, 2022. "Design of multi-wing chaotic systems with higher largest Lyapunov exponent," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Mezatio, Brice Anicet & Motchongom, Marceline Tingue & Wafo Tekam, Blaise Raoul & Kengne, Romanic & Tchitnga, Robert & Fomethe, Anaclet, 2019. "A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 100-115.
    4. Xu, Shaochuan & Wang, Xingyuan & Ye, Xiaolin, 2022. "A new fractional-order chaos system of Hopfield neural network and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Kenmogne, Fabien & Noubissie, Samuel & Ndombou, Guy Bertrand & Tebue, Eric Tala & Sonna, Armel Viquit & Yemélé, David, 2021. "Dynamics of two models of driven extended jerk oscillators: Chaotic pulse generations and application in engineering," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Wang, Ran & Li, Chunbiao & Kong, Sixiao & Jiang, Yicheng & Lei, Tengfei, 2022. "A 3D memristive chaotic system with conditional symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Tabekoueng Njitacke, Zeric & Tsafack, Nestor & Ramakrishnan, Balamurali & Rajagopal, Kartikeyan & Kengne, Jacques & Awrejcewicz, Jan, 2021. "Complex dynamics from heterogeneous coupling and electromagnetic effect on two neurons: Application in images encryption," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Yang, Zhen & Liu, Yinzhe & Wu, Yuqi & Qi, Yunliang & Ren, Fengyuan & Li, Shouliang, 2023. "A high speed pseudo-random bit generator driven by 2D-discrete hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    10. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Fei Yu & Li Liu & Shuai Qian & Lixiang Li & Yuanyuan Huang & Changqiong Shi & Shuo Cai & Xianming Wu & Sichun Du & Qiuzhen Wan, 2020. "Chaos-Based Application of a Novel Multistable 5D Memristive Hyperchaotic System with Coexisting Multiple Attractors," Complexity, Hindawi, vol. 2020, pages 1-19, March.
    12. Wan, Qiuzhen & Li, Fei & Chen, Simiao & Yang, Qiao, 2023. "Symmetric multi-scroll attractors in magnetized Hopfield neural network under pulse controlled memristor and pulse current stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Quan Xu & Xiao Tan & Yunzhen Zhang & Han Bao & Yihua Hu & Bocheng Bao & Mo Chen, 2020. "Riddled Attraction Basin and Multistability in Three-Element-Based Memristive Circuit," Complexity, Hindawi, vol. 2020, pages 1-13, August.
    14. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Zhang, Xin & Li, Chunbiao & Chen, Yudi & IU, Herbert H.C. & Lei, Tengfei, 2020. "A memristive chaotic oscillator with controllable amplitude and frequency," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    16. Wu, H. & Zhou, J. & Chen, M. & Xu, Q. & Bao, B., 2022. "DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    17. Ma, Xujiong & Mou, Jun & Xiong, Li & Banerjee, Santo & Cao, Yinghong & Wang, Jieyang, 2021. "A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Yue Zhu & Chunhua Wang & Jingru Sun & Fei Yu, 2023. "A Chaotic Image Encryption Method Based on the Artificial Fish Swarms Algorithm and the DNA Coding," Mathematics, MDPI, vol. 11(3), pages 1-18, February.
    19. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    20. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    21. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tareq Hamadneh & Abderrahmane Abbes & Hassan Al-Tarawneh & Gharib Mousa Gharib & Wael Mahmoud Mohammad Salameh & Maha S. Al Soudi & Adel Ouannas, 2023. "On Chaos and Complexity Analysis for a New Sine-Based Memristor Map with Commensurate and Incommensurate Fractional Orders," Mathematics, MDPI, vol. 11(20), pages 1-16, October.
    2. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Qingye Huang & Linqing Huang & Shuting Cai & Xiaoming Xiong & Hui Zhang, 2023. "On a Symmetric Image Cryptosystem Based on a Novel One-Dimensional Chaotic System and Banyan Network," Mathematics, MDPI, vol. 11(21), pages 1-21, October.
    4. Jayaraman Venkatesh & Alexander N. Pchelintsev & Anitha Karthikeyan & Fatemeh Parastesh & Sajad Jafari, 2023. "A Fractional-Order Memristive Two-Neuron-Based Hopfield Neuron Network: Dynamical Analysis and Application for Image Encryption," Mathematics, MDPI, vol. 11(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    2. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Zizhao Xie & Jingru Sun & Yiping Tang & Xin Tang & Oluyomi Simpson & Yichuang Sun, 2023. "A K-SVD Based Compressive Sensing Method for Visual Chaotic Image Encryption," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    6. Zhenggang Guo & Junjie Wen & Jun Mou, 2022. "Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    7. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Li, Kexin & Bao, Bocheng & Ma, Jun & Chen, Mo & Bao, Han, 2022. "Synchronization transitions in a discrete memristor-coupled bi-neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2022. "A mem-element Wien-Bridge circuit with amplitude modulation and three kinds of offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    10. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    11. Dutta, Maitreyee & Roy, Binoy Krishna, 2021. "A new memductance-based fractional-order chaotic system and its fixed-time synchronisation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Jayaraman Venkatesh & Alexander N. Pchelintsev & Anitha Karthikeyan & Fatemeh Parastesh & Sajad Jafari, 2023. "A Fractional-Order Memristive Two-Neuron-Based Hopfield Neuron Network: Dynamical Analysis and Application for Image Encryption," Mathematics, MDPI, vol. 11(21), pages 1-17, October.
    13. Wang, Ning & Xu, Dan & Li, Ze & Xu, Quan, 2023. "A general configuration for nonlinear circuit employing current-controlled nonlinearity: Application in Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Bao, H. & Gu, Y. & Xu, Q. & Zhang, X. & Bao, B., 2022. "Parallel bi-memristor hyperchaotic map with extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    16. Echenausía-Monroy, J.L. & Gilardi-Velázquez, H.E. & Wang, Ning & Jaimes-Reátegui, R. & García-López, J.H. & Huerta-Cuellar, G., 2022. "Multistability route in a PWL multi-scroll system through fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    17. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    18. Xiu, Chunbo & Fang, Jingyao & Ma, Xin, 2022. "Design and circuit implementations of multimemristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Wang, Shaofu, 2023. "A novel memristive chaotic system and its adaptive sliding mode synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Bao, Han & Rong, Kang & Chen, Mo & Zhang, Xi & Bao, Bocheng, 2023. "Multistability and synchronization of discrete maps via memristive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.