IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921010699.html
   My bibliography  Save this article

Generation of Multidirectional Mirror Symmetric Multiscroll Chaotic Attractors (MSMCA) in Double Wing Satellite Chaotic System

Author

Listed:
  • Azam, Anam
  • Aqeel, Muhammad
  • Sunny, Danish Ali

Abstract

Based on the multilevel-logic pulse control method the simplified mirror symmetric multidirectional multiscroll chaotic attractors are designed via multilevel pulse excitation sources. This technique is based on the non-autonomous approach that generates multidirectional mirror symmetric multiscroll chaotic attractors (MSMCA) without changing the original nonlinear functions. The complex double wing satellite system is taken as an example to explain the mechanism of this scheme. In this paper, the multilevel pulse excitation sources are used in the quadratic terms of the satellite system (for mirror symmetry) and in the transformed state variables (for multidirectional multiscroll attractors) simultaneously to generate multidirectional MSMCA. By using the multilevel logic pulse control signal in double wing satellite system, a complete family of multidirectional MSMCA including 1D, 2D and 3D MSMCA is generated. Further, we explored that the arbitrary multidirectional (MSMCA) can be designed by introducing pulsed excitation in corresponding state variable directions (1D, plane (2D) or space (3D)). Numerical simulations together with theoretical analysis show the flexibility and effectiveness of the proposed methodology.

Suggested Citation

  • Azam, Anam & Aqeel, Muhammad & Sunny, Danish Ali, 2022. "Generation of Multidirectional Mirror Symmetric Multiscroll Chaotic Attractors (MSMCA) in Double Wing Satellite Chaotic System," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010699
    DOI: 10.1016/j.chaos.2021.111715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qiujie & Hong, Qinghui & Liu, Xiaoyang & Wang, Xiaoping & Zeng, Zhigang, 2020. "A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Wei Ai & Kehui Sun & Yuanli Fu, 2018. "Design of multiwing-multiscroll grid compound chaotic system and its circuit implementation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(06), pages 1-16, June.
    3. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Bouallegue, Kais & Chaari, Abdessattar & Toumi, Ahmed, 2011. "Multi-scroll and multi-wing chaotic attractor generated with Julia process fractal," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 79-85.
    5. Ahmad, Wajdi M., 2006. "A simple multi-scroll hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1213-1219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Yu & Wuxiong Zhang & Xiaoli Xiao & Wei Yao & Shuo Cai & Jin Zhang & Chunhua Wang & Yi Li, 2023. "Dynamic Analysis and FPGA Implementation of a New, Simple 5D Memristive Hyperchaotic Sprott-C System," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    2. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Yan, Minxiu & Jie, Jingfeng, 2022. "Fractional-order multiwing switchable chaotic system with a wide range of parameters," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Zhang, Chaoxia & Yu, Simin, 2011. "Generation of multi-wing chaotic attractor in fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 845-850.
    4. Aguirre-Hernández, B. & Campos-Cantón, E. & López-Renteria, J.A. & Díaz González, E.C., 2015. "A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 100-106.
    5. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Yalçin, Müştak E., 2007. "Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1659-1666.
    7. Soliman, Nancy S. & Tolba, Mohammed F. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2019. "Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 292-307.
    8. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Peng, Hongxin & Ji’e, Musha & Du, Xinyu & Duan, Shukai & Wang, Lidan, 2023. "Design of pseudorandom number generator based on a controllable multi-double-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Gao, Tiegang & Gu, Qiaolun & Chen, Zengqiang, 2009. "Analysis of the hyper-chaos generated from Chen’s system," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1849-1855.
    11. Banerjee, Santo, 2009. "Synchronization of time-delayed systems with chaotic modulation and cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 745-750.
    12. Peng, Xuenan & Zeng, Yicheng, 2020. "Image encryption application in a system for compounding self-excited and hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Liu, Hongwei & He, Ping & Li, Guodong & Xu, Xiangliang & Zhong, Huiyan, 2022. "Multi-directional annular multi-wing chaotic system based on Julia fractals," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    14. Grassi, Giuseppe & Severance, Frank L. & Miller, Damon A., 2009. "Multi-wing hyperchaotic attractors from coupled Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 284-291.
    15. Echenausía-Monroy, J.L. & Gilardi-Velázquez, H.E. & Wang, Ning & Jaimes-Reátegui, R. & García-López, J.H. & Huerta-Cuellar, G., 2022. "Multistability route in a PWL multi-scroll system through fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Fei Yu & Wuxiong Zhang & Xiaoli Xiao & Wei Yao & Shuo Cai & Jin Zhang & Chunhua Wang & Yi Li, 2023. "Dynamic Analysis and FPGA Implementation of a New, Simple 5D Memristive Hyperchaotic Sprott-C System," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    17. AboAlNaga, BahaaAlDeen M. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2021. "Analysis and FPGA of semi-fractal shapes based on complex Gaussian map," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Mohamed, Sara M. & Sayed, Wafaa S. & Said, Lobna A. & Radwan, Ahmed G., 2022. "FPGA realization of fractals based on a new generalized complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Zhu, Wanting & Sun, Kehui & He, Shaobo & Wang, Huihai & Liu, Wenhao, 2023. "A class of m-dimension grid multi-cavity hyperchaotic maps and its application," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    20. Nasr, Salah & Mekki, Hassen & Bouallegue, Kais, 2019. "A multi-scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 366-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.