IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics096007792300704x.html
   My bibliography  Save this article

Design of pseudorandom number generator based on a controllable multi-double-scroll chaotic system

Author

Listed:
  • Peng, Hongxin
  • Ji’e, Musha
  • Du, Xinyu
  • Duan, Shukai
  • Wang, Lidan

Abstract

The generation, implementation, and application of multi-scroll chaotic systems have been extensively studied due to their complex dynamic behaviors. This paper introduces a new controlled multi-double-scroll chaotic system and its corresponding implementation on a digital platform, the Field Programmable Gate Array (FPGA). The proposed system can generate 2N+1 and 2N+2 numbers of double-scroll attractors. In particular, the system has controllable multistability and multi-double-scroll complete amplitude control characteristics. The numerical analyses of Lyapunov exponents, bifurcation diagrams, phase diagrams, and basin of attraction show that the system exhibits complex dynamic behaviors. Furthermore, a new pseudo-random number generator (PRNG) is designed based on the multi-double-scroll chaotic system (MDSCS), in which a post-processing circuit is used to improve the quality of the generator. The PRNG has a high data throughput and uses only a small amount of resources in the target FPGA. The proposed PRNG uses less than 1% of the resources of the target FPGA and delivers a data bit throughput of 7.2 Gbps/s. To our best knowledge, it reaches the highest data throughput of PRNG based on continuous chaotic systems. The evaluation sequences are tested using generic randomness tests such as NIST SP800-22, TestU01, and Histograms. The experimental results show that the random sequences generated by our design have passed all the test items, which means that they will have excellent performance in the application.

Suggested Citation

  • Peng, Hongxin & Ji’e, Musha & Du, Xinyu & Duan, Shukai & Wang, Lidan, 2023. "Design of pseudorandom number generator based on a controllable multi-double-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s096007792300704x
    DOI: 10.1016/j.chaos.2023.113803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792300704X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qiujie & Hong, Qinghui & Liu, Xiaoyang & Wang, Xiaoping & Zeng, Zhigang, 2020. "A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Ramamoorthy, Ramesh & Rajagopal, Karthikeyan & Leutcho, Gervais Dolvis & Krejcar, Ondrej & Namazi, Hamidreza & Hussain, Iqtadar, 2022. "Multistable dynamics and control of a new 4D memristive chaotic Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Mesbah, Samineh & Moghtadaei, Motahareh & Hashemi Golpayegani, Mohammad Reza & Towhidkhah, Farzad, 2014. "One-dimensional map-based neuron model: A logistic modification," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 20-29.
    4. Faqiang Wang & Hongbo Cao & Dingding Zhai & Eric Campos, 2021. "A New 4D Piecewise Linear Multiscroll Chaotic System with Multistability and Its FPGA-Based Implementation," Complexity, Hindawi, vol. 2021, pages 1-15, May.
    5. Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.
    6. Borah, Manashita & Das, Debanita & Gayan, Antara & Fenton, Flavio & Cherry, Elizabeth, 2021. "Control and anticontrol of chaos in fractional-order models of Diabetes, HIV, Dengue, Migraine, Parkinson's and Ebola virus diseases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Echenausía-Monroy, J.L. & Gilardi-Velázquez, H.E. & Wang, Ning & Jaimes-Reátegui, R. & García-López, J.H. & Huerta-Cuellar, G., 2022. "Multistability route in a PWL multi-scroll system through fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Elmanfaloty, Rania A. & Abou-Bakr, Ehab, 2019. "Random property enhancement of a 1D chaotic PRNG with finite precision implementation," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 134-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Sahoo, Shilalipi & Roy, Binoy Krishna, 2022. "A new multi-wing chaotic attractor with unusual variation in the number of wings," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Minati, Ludovico & Frasca, Mattia & Valdes-Sosa, Pedro A. & Barbot, Jean-Pierre & Letellier, Christophe, 2023. "Flatness-based real-time control of experimental analog chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. N. C. Pati, 2023. "Bifurcations and multistability in a physically extended Lorenz system for rotating convection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-15, August.
    7. Bao, Han & Ding, Ruoyu & Chen, Bei & Xu, Quan & Bao, Bocheng, 2023. "Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Wang, Ning & Cui, Mengkai & Yu, Xihong & Shan, Yufan & Xu, Quan, 2023. "Generating multi-folded hidden Chua’s attractors: Two-case study," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Yan, Minxiu & Jie, Jingfeng, 2022. "Fractional-order multiwing switchable chaotic system with a wide range of parameters," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Fei Yu & Wuxiong Zhang & Xiaoli Xiao & Wei Yao & Shuo Cai & Jin Zhang & Chunhua Wang & Yi Li, 2023. "Dynamic Analysis and FPGA Implementation of a New, Simple 5D Memristive Hyperchaotic Sprott-C System," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    11. Azam, Anam & Aqeel, Muhammad & Sunny, Danish Ali, 2022. "Generation of Multidirectional Mirror Symmetric Multiscroll Chaotic Attractors (MSMCA) in Double Wing Satellite Chaotic System," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    12. Yang, Zhen & Liu, Yinzhe & Wu, Yuqi & Qi, Yunliang & Ren, Fengyuan & Li, Shouliang, 2023. "A high speed pseudo-random bit generator driven by 2D-discrete hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Marzban, Hamid Reza & Nezami, Atiyeh, 2022. "Analysis of nonlinear fractional optimal control systems described by delay Volterra–Fredholm integral equations via a new spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Singh, Piyush Pratap & Roy, Binoy Krishna, 2022. "Chaos and multistability behaviors in 4D dissipative cancer growth/decay model with unstable line of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    15. Jiang Wang & Yang Gu & Kang Rong & Quan Xu & Xi Zhang, 2022. "Memristor-Based Lozi Map with Hidden Hyperchaos," Mathematics, MDPI, vol. 10(19), pages 1-12, September.
    16. Tutueva, Aleksandra V. & Nepomuceno, Erivelton G. & Karimov, Artur I. & Andreev, Valery S. & Butusov, Denis N., 2020. "Adaptive chaotic maps and their application to pseudo-random numbers generation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Nardo, Lucas G. & Nepomuceno, Erivelton G. & Arias-Garcia, Janier & Butusov, Denis N., 2019. "Image encryption using finite-precision error," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 69-78.
    18. Ostrovskii, Valerii Yu. & Rybin, Vyacheslav G. & Karimov, Artur I. & Butusov, Denis N., 2022. "Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    19. Lai, Qiang & Chen, Zhijie, 2023. "Dynamical analysis and finite-time synchronization of grid-scroll memristive chaotic system without equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    20. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s096007792300704x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.