IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s0960077922009730.html
   My bibliography  Save this article

Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry

Author

Listed:
  • Ostrovskii, Valerii Yu.
  • Rybin, Vyacheslav G.
  • Karimov, Artur I.
  • Butusov, Denis N.

Abstract

Multistability is an inherent property of many nonlinear dynamical systems. However, finding exact conditions where a certain nonlinear system is multistable, is a complex problem. In this study, we propose a novel approach for inducing multistability in a discrete system by applying the numerical integration method with variable symmetry to a continuous monostable system and finding a range of the symmetry coefficients for which multiple attractors coexist in its discrete model. We consider the well-known Chen system as an example, showing that multistability can be induced by discretization with variable symmetry. A special two-stage algorithm is proposed for a fast search for hidden attractors. Using the proposed algorithm, we found several multistable versions of the discrete Chen system and investigated their attractors and basins of attraction. By applying numerical backward error analysis, we discovered a generalized continuous Chen system with additional terms which were not present in the original system and have shown its approximate equivalence to the obtained discrete system. The results of this study can be used for inducing artificial multistability in a wide range of chaotic systems with possible applications in chaotic cryptography, communication, and chaos-based sensing.

Suggested Citation

  • Ostrovskii, Valerii Yu. & Rybin, Vyacheslav G. & Karimov, Artur I. & Butusov, Denis N., 2022. "Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009730
    DOI: 10.1016/j.chaos.2022.112794
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bao, B.C. & Bao, H. & Wang, N. & Chen, M. & Xu, Q., 2017. "Hidden extreme multistability in memristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 102-111.
    2. Artur Karimov & Erivelton G. Nepomuceno & Aleksandra Tutueva & Denis Butusov, 2020. "Algebraic Method for the Reconstruction of Partially Observed Nonlinear Systems Using Differential and Integral Embedding," Mathematics, MDPI, vol. 8(2), pages 1-22, February.
    3. Tutueva, Aleksandra & Moysis, Lazaros & Rybin, Vyacheslav & Zubarev, Alexander & Volos, Christos & Butusov, Denis, 2022. "Adaptive symmetry control in secure communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Bao, H. & Gu, Y. & Xu, Q. & Zhang, X. & Bao, B., 2022. "Parallel bi-memristor hyperchaotic map with extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Ramamoorthy, Ramesh & Rajagopal, Karthikeyan & Leutcho, Gervais Dolvis & Krejcar, Ondrej & Namazi, Hamidreza & Hussain, Iqtadar, 2022. "Multistable dynamics and control of a new 4D memristive chaotic Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Frank Hellmann & Paul Schultz & Patrycja Jaros & Roman Levchenko & Tomasz Kapitaniak & Jürgen Kurths & Yuri Maistrenko, 2020. "Network-induced multistability through lossy coupling and exotic solitary states," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Tutueva, Aleksandra V. & Moysis, Lazaros & Rybin, Vyacheslav G. & Kopets, Ekaterina E. & Volos, Christos & Butusov, Denis N., 2022. "Fast synchronization of symmetric Hénon maps using adaptive symmetry control," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Xiong, Pei-Ying & Jahanshahi, Hadi & Alcaraz, Raúl & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alsaadi, Fawaz E., 2021. "Spectral Entropy Analysis and Synchronization of a Multi-Stable Fractional-Order Chaotic System using a Novel Neural Network-Based Chattering-Free Sliding Mode Technique," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Tutueva, Aleksandra V. & Nepomuceno, Erivelton G. & Karimov, Artur I. & Andreev, Valery S. & Butusov, Denis N., 2020. "Adaptive chaotic maps and their application to pseudo-random numbers generation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Daza, Alvar & Wagemakers, Alexandre & Sanjuán, Miguel A.F., 2022. "Classifying basins of attraction using the basin entropy," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. C. Pati, 2023. "Bifurcations and multistability in a physically extended Lorenz system for rotating convection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-15, August.
    2. Ivan Babkin & Vyacheslav Rybin & Valery Andreev & Timur Karimov & Denis Butusov, 2024. "Coherent Chaotic Communication Using Generalized Runge–Kutta Method," Mathematics, MDPI, vol. 12(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamina Soula & Hadi Jahanshahi & Abdullah A. Al-Barakati & Irene Moroz, 2023. "Dynamics and Global Bifurcations in Two Symmetrically Coupled Non-Invertible Maps," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Fan, Chunlei & Ding, Qun, 2023. "Design and geometric control of polynomial chaotic maps with any desired positive Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Lai, Qiang & Chen, Zhijie, 2023. "Dynamical analysis and finite-time synchronization of grid-scroll memristive chaotic system without equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Ouannas, Adel & Batiha, Iqbal M. & Bekiros, Stelios & Liu, Jinping & Jahanshahi, Hadi & Aly, Ayman A. & Alghtani, Abdulaziz H., 2021. "Synchronization of the glycolysis reaction-diffusion model via linear control law," LSE Research Online Documents on Economics 112776, London School of Economics and Political Science, LSE Library.
    5. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Ahmad Taher Azar & Ngo Mouelas Adele & Kammogne Soup Tewa Alain & Romanic Kengne & Fotsin Hilaire Bertrand, 2018. "Multistability Analysis and Function Projective Synchronization in Relay Coupled Oscillators," Complexity, Hindawi, vol. 2018, pages 1-12, January.
    7. Othman Abdullah Almatroud & Viet-Thanh Pham & Giuseppe Grassi & Mohammad Alshammari & Sahar Albosaily & Van Van Huynh, 2023. "Design of High-Dimensional Maps with Sine Terms," Mathematics, MDPI, vol. 11(17), pages 1-10, August.
    8. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    9. G. H. Kom & J. Kengne & J. R. Mboupda Pone & G. Kenne & A. B. Tiedeu, 2018. "Asymmetric Double Strange Attractors in a Simple Autonomous Jerk Circuit," Complexity, Hindawi, vol. 2018, pages 1-16, February.
    10. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Liu, Chongyang & Zhou, Tuo & Gong, Zhaohua & Yi, Xiaopeng & Teo, Kok Lay & Wang, Song, 2023. "Robust optimal control of nonlinear fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    13. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    15. Shihong Zhang & Hu Shi & Baizhong Wang & Chunlu Ma & Qinghua Li, 2024. "A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure," Mathematics, MDPI, vol. 12(10), pages 1-35, May.
    16. Jia, Hongyan & Shi, Wenxin & Wang, Lei & Qi, Guoyuan, 2020. "Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Li, Chunbiao & Sprott, Julien Clinton & Zhang, Xin & Chai, Lin & Liu, Zuohua, 2022. "Constructing conditional symmetry in symmetric chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Yan, Yanjun & Chen, Kai & Zhao, Yijiu & Wang, Houjun & Xu, Bo & Wang, Yifan, 2024. "An innovative orthogonal matrix based on nonlinear chaotic system for compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    19. Dong, Youheng & Zhao, Geng, 2021. "A spatiotemporal chaotic system based on pseudo-random coupled map lattices and elementary cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    20. Colin Sokol Kuka & Yihua Hu & Quan Xu & James Chandler & Mohammed Alkahtani, 2021. "A Novel True Random Number Generator in Near Field Communication as Memristive Wireless Power Transmission," J, MDPI, vol. 4(4), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.