IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2467-d863759.html
   My bibliography  Save this article

Indirect Neural-Enhanced Integral Sliding Mode Control for Finite-Time Fault-Tolerant Attitude Tracking of Spacecraft

Author

Listed:
  • Qijia Yao

    (School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Hadi Jahanshahi

    (Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

  • Stelios Bekiros

    (FEMA, University of Malta, MSD 2080 Msida, Malta
    LSE Health, Department of Health Policy, London School of Economics and Political Science, London WC2A 2AE, UK
    IPAG Business School (IPAG), 184 Boulevard Saint-Germain, 75006 Paris, France)

  • Sanda Florentina Mihalache

    (Automatic Control, Computers & Electronics Department, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania)

  • Naif D. Alotaibi

    (Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

In this article, a neural integral sliding mode control strategy is presented for the finite-time fault-tolerant attitude tracking of rigid spacecraft subject to unknown inertia and disturbances. First, an integral sliding mode controller was developed by originally constructing a novel integral sliding mode surface to avoid the singularity problem. Then, the neural network (NN) was embedded into the integral sliding mode controller to compensate the lumped uncertainty and replace the robust switching term. In this way, the chattering phenomenon was significantly suppressed. Particularly, the mechanism of indirect neural approximation was introduced through inequality relaxation. Benefiting from this design, only a single learning parameter was required to be adjusted online, and the computation burden of the proposed controller was extremely reduced. The stability argument showed that the proposed controller could guarantee that the attitude and angular velocity tracking errors were regulated to the minor residual sets around zero in a finite time. It was noteworthy that the proposed controller was not only strongly robust against unknown inertia and disturbances, but also highly insensitive to actuator faults. Finally, the effectiveness and advantages of the proposed control strategy were validated using simulations and comparisons.

Suggested Citation

  • Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Indirect Neural-Enhanced Integral Sliding Mode Control for Finite-Time Fault-Tolerant Attitude Tracking of Spacecraft," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2467-:d:863759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Yao, Qijia, 2021. "Neural adaptive learning synchronization of second-order uncertain chaotic systems with prescribed performance guarantees," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Wang, Yong-Long & Jahanshahi, Hadi & Bekiros, Stelios & Bezzina, Frank & Chu, Yu-Ming & Aly, Ayman A., 2021. "Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Xiong, Pei-Ying & Jahanshahi, Hadi & Alcaraz, Raúl & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alsaadi, Fawaz E., 2021. "Spectral Entropy Analysis and Synchronization of a Multi-Stable Fractional-Order Chaotic System using a Novel Neural Network-Based Chattering-Free Sliding Mode Technique," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    2. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Alsaade, Fawaz W. & Yao, Qijia & Bekiros, Stelios & Al-zahrani, Mohammed S. & Alzahrani, Ali S. & Jahanshahi, Hadi, 2022. "Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Hajid Alsubaie & Amin Yousefpour & Ahmed Alotaibi & Naif D. Alotaibi & Hadi Jahanshahi, 2023. "Stabilization of Nonlinear Vibration of a Fractional-Order Arch MEMS Resonator Using a New Disturbance-Observer-Based Finite-Time Sliding Mode Control," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    5. Nguyen Xuan-Mung & Mehdi Golestani & Sung Kyung Hong, 2023. "Constrained Nonsingular Terminal Sliding Mode Attitude Control for Spacecraft: A Funnel Control Approach," Mathematics, MDPI, vol. 11(1), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouannas, Adel & Batiha, Iqbal M. & Bekiros, Stelios & Liu, Jinping & Jahanshahi, Hadi & Aly, Ayman A. & Alghtani, Abdulaziz H., 2021. "Synchronization of the glycolysis reaction-diffusion model via linear control law," LSE Research Online Documents on Economics 112776, London School of Economics and Political Science, LSE Library.
    2. Alsaade, Fawaz W. & Yao, Qijia & Bekiros, Stelios & Al-zahrani, Mohammed S. & Alzahrani, Ali S. & Jahanshahi, Hadi, 2022. "Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Liu, Chongyang & Zhou, Tuo & Gong, Zhaohua & Yi, Xiaopeng & Teo, Kok Lay & Wang, Song, 2023. "Robust optimal control of nonlinear fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Hajid Alsubaie & Amin Yousefpour & Ahmed Alotaibi & Naif D. Alotaibi & Hadi Jahanshahi, 2023. "Stabilization of Nonlinear Vibration of a Fractional-Order Arch MEMS Resonator Using a New Disturbance-Observer-Based Finite-Time Sliding Mode Control," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    6. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Jinping Liu & Abdullah A. Al-Barakati, 2023. "Fixed-Time Adaptive Chaotic Control for Permanent Magnet Synchronous Motor Subject to Unknown Parameters and Perturbations," Mathematics, MDPI, vol. 11(14), pages 1-14, July.
    7. Qing Ding & Oumate Alhadji Abba & Hadi Jahanshahi & Madini O. Alassafi & Wen-Hua Huang, 2022. "Dynamical Investigation, Electronic Circuit Realization and Emulation of a Fractional-Order Chaotic Three-Echelon Supply Chain System," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    8. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Gain-Scheduled Sliding-Mode-Type Iterative Learning Control Design for Mechanical Systems," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    10. Alsaadi, Fawaz E. & Bekiros, Stelios & Yao, Qijia & Liu, Jinping & Jahanshahi, Hadi, 2023. "Achieving resilient chaos suppression and synchronization of fractional-order supply chains with fault-tolerant control," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Wang, Bo & Liu, Jinping & Alassafi, Madini O. & Alsaadi, Fawaz E. & Jahanshahi, Hadi & Bekiros, Stelios, 2022. "Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    12. Qijia Yao & Hadi Jahanshahi & Larissa M. Batrancea & Naif D. Alotaibi & Mircea-Iosif Rus, 2022. "Fixed-Time Output-Constrained Synchronization of Unknown Chaotic Financial Systems Using Neural Learning," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    13. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    14. Y. Esmaeelzade Aghdam & A. Neisy & A. Adl, 2024. "Simulating and Pricing CAT Bonds Using the Spectral Method Based on Chebyshev Basis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 423-435, January.
    15. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Izadbakhsh, Alireza & Nikdel, Nazila, 2021. "Chaos synchronization using differential equations as extended state observer," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    17. Khalid A. Alattas & Mai The Vu & Omid Mofid & Fayez F. M. El-Sousy & Abdullah K. Alanazi & Jan Awrejcewicz & Saleh Mobayen, 2022. "Adaptive Nonsingular Terminal Sliding Mode Control for Performance Improvement of Perturbed Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    18. Baghani, Omid, 2022. "SCW-iterative-computational method for solving a wide class of nonlinear fractional optimal control problems with Caputo derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 540-558.
    19. Yan, Shaohui & Wang, Ertong & Gu, Binxian & Wang, Qiyu & Ren, Yu & Wang, Jianjian, 2022. "Analysis and finite-time synchronization of a novel double-wing chaotic system with transient chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    20. Yao, Qijia, 2021. "Neural adaptive learning synchronization of second-order uncertain chaotic systems with prescribed performance guarantees," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2467-:d:863759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.