IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v171y2023ics096007792300423x.html
   My bibliography  Save this article

Patterns stability in cardiac tissue under spatial electromagnetic radiation

Author

Listed:
  • Xu, Ying
  • Ren, Guodong
  • Ma, Jun

Abstract

The electric activity in myocardial tissue is controlled by the target waves emitted from the sinoatrial node and then the Calcium flow is controlled to regulate the heartbeat. The occurrence of local defects can block the wave propagation in the cardiac tissue and then the heartbeat can be disturbed completely. During the electrophysiological activity including stochastic diffusion of intracellular ions and continuous exchange of extracellular ions along ion channel embedded in the cell membrane, electromagnetic induction occurs in the cardiac tissue and the involvement of external electromagnetic radiation can change the excitability and the neural activities. In this paper, based on a memristive cardiac tissue model by incorporating magnetic flux variable and induction current into the two-variable cardiac model for discerning cardiac excitation, spatial electromagnetic radiation is applied to investigate the stability and propagation of waves in the cardiac tissue. Wave propagation in the reaction-diffusion equations for cardiac tissue is approached by an equivalent diffusive neural network on square array after discretization. Local heterogeneity is produced by introducing diversity in initial value for inducing spiral seed, and stable spiral waves are developed as initial states, which represent tachycardia and arrhythmia in the cardiac tissue. It is found that symmetric spatial patterns can be controlled by the external electromagnetic radiation, in particular, nonlinear resonance is enhanced and specific spatial patterns are developed under noisy radiation.

Suggested Citation

  • Xu, Ying & Ren, Guodong & Ma, Jun, 2023. "Patterns stability in cardiac tissue under spatial electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:chsofr:v:171:y:2023:i:c:s096007792300423x
    DOI: 10.1016/j.chaos.2023.113522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792300423X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Fuqiang & Hu, Xikui & Ma, Jun, 2022. "Estimation of the effect of magnetic field on a memristive neuron," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    2. Perc, Matjaž, 2007. "Effects of small-world connectivity on noise-induced temporal and spatial order in neural media," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 280-291.
    3. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Baysal, Veli & Yilmaz, Ergin, 2020. "Effects of electromagnetic induction on vibrational resonance in single neurons and neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. T K Shajahan & Alok Ranjan Nayak & Rahul Pandit, 2009. "Spiral-Wave Turbulence and Its Control in the Presence of Inhomogeneities in Four Mathematical Models of Cardiac Tissue," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-21, March.
    6. Zhang, Yin & Wu, Fuqiang & Wang, Chunni & Ma, Jun, 2019. "Stability of target waves in excitable media under electromagnetic induction and radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 519-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Feibiao & Su, Jianzhong & Liu, Shenquan, 2023. "Canards dynamics to explore the rhythm transition under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    4. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    5. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
    8. Yuan, Guoyong & Xu, Lin & Xu, Aiguo & Wang, Guangrui & Yang, Shiping, 2011. "Spiral waves in excitable media due to noise and periodic forcing," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 728-738.
    9. Nele Vandersickel & Ivan V Kazbanov & Anita Nuitermans & Louis D Weise & Rahul Pandit & Alexander V Panfilov, 2014. "A Study of Early Afterdepolarizations in a Model for Human Ventricular Tissue," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-19, January.
    10. Upadhyay, Ranjit Kumar & Paul, Chinmoy & Mondal, Argha & Vishwakarma, Gajendra K., 2018. "Estimation of biophysical parameters in a neuron model under random fluctuations," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 364-373.
    11. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 170-179.
    12. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    15. Rostami, Zahra & Rajagopal, Karthikeyan & Khalaf, Abdul Jalil M. & Jafari, Sajad & Perc, Matjaž & Slavinec, Mitja, 2018. "Wavefront-obstacle interactions and the initiation of reentry in excitable media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1162-1173.
    16. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    17. Wu, Fuqiang & Guo, Yitong & Ma, Jun & Jin, Wuyin, 2023. "Synchronization of bursting memristive Josephson junctions via resistive and magnetic coupling," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    18. Liu, Huixia & Lu, Lulu & Zhu, Yuan & Wei, Zhouchao & Yi, Ming, 2022. "Stochastic resonance: The response to envelope modulation signal for neural networks with different topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Iqbal, Naveed & Wu, Ranchao & Liu, Biao, 2017. "Pattern formation by super-diffusion in FitzHugh–Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 245-258.
    20. Xu, Binbin & Jacquir, Sabir & Laurent, Gabriel & Bilbault, Jean-Marie & Binczak, Stéphane, 2011. "A hybrid stimulation strategy for suppression of spiral waves in cardiac tissue," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 633-639.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:171:y:2023:i:c:s096007792300423x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.