IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40812-x.html
   My bibliography  Save this article

Purinergic signaling mediates neuroglial interactions to modulate sighs

Author

Listed:
  • Liza J. Severs

    (Seattle Children’s Research Institute
    University of Washington)

  • Nicholas E. Bush

    (Seattle Children’s Research Institute)

  • Lely A. Quina

    (Seattle Children’s Research Institute)

  • Skyler Hidalgo-Andrade

    (Seattle Children’s Research Institute)

  • Nicholas J. Burgraff

    (Seattle Children’s Research Institute)

  • Tatiana Dashevskiy

    (Seattle Children’s Research Institute)

  • Andy Y. Shih

    (Seattle Children’s Research Institute
    University of Washington School of Medicine
    University of Washington)

  • Nathan A. Baertsch

    (Seattle Children’s Research Institute
    University of Washington School of Medicine)

  • Jan-Marino Ramirez

    (Seattle Children’s Research Institute
    University of Washington
    University of Washington School of Medicine
    University of Washington School of Medicine)

Abstract

Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (preBötC). Our experimental evidence suggests that purinergic signaling is necessary to generate spontaneous and hypoxia-induced sighs in a mouse model. Our results demonstrate that driving calcium increases in astrocytes through pharmacological methods robustly increases sigh, but not eupnea, frequency. Calcium imaging of preBötC slices corroborates this finding with an increase in astrocytic calcium upon application of sigh modulators, increasing intracellular calcium through g-protein signaling. Moreover, photo-activation of preBötC astrocytes is sufficient to elicit sigh activity, and this response is blocked with purinergic antagonists. We conclude that sighs are modulated through neuron-glia coupling in the preBötC network, where the distinct modulatory responses of neurons and glia allow for both rhythms to be independently regulated.

Suggested Citation

  • Liza J. Severs & Nicholas E. Bush & Lely A. Quina & Skyler Hidalgo-Andrade & Nicholas J. Burgraff & Tatiana Dashevskiy & Andy Y. Shih & Nathan A. Baertsch & Jan-Marino Ramirez, 2023. "Purinergic signaling mediates neuroglial interactions to modulate sighs," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40812-x
    DOI: 10.1038/s41467-023-40812-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40812-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40812-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathan Andrew Baertsch & Hans Christopher Baertsch & Jan Marino Ramirez, 2018. "The interdependence of excitation and inhibition for the control of dynamic breathing rhythms," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    2. Marta Gómez-Gonzalo & Gabriele Losi & Angela Chiavegato & Micaela Zonta & Mario Cammarota & Marco Brondi & Francesco Vetri & Laura Uva & Tullio Pozzan & Marco de Curtis & Gian Michele Ratto & Giorgio , 2010. "An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold," PLOS Biology, Public Library of Science, vol. 8(4), pages 1-19, April.
    3. Alexander V. Gourine & Enrique Llaudet & Nicholas Dale & K. Michael Spyer, 2005. "ATP is a mediator of chemosensory transduction in the central nervous system," Nature, Nature, vol. 436(7047), pages 108-111, July.
    4. Shahriar Sheikhbahaei & Egor A. Turovsky & Patrick S. Hosford & Anna Hadjihambi & Shefeeq M. Theparambil & Beihui Liu & Nephtali Marina & Anja G. Teschemacher & Sergey Kasparov & Jeffrey C. Smith & Al, 2018. "Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junli Zhao & Jinyi Sun & Yang Zheng & Yanrong Zheng & Yuying Shao & Yulan Li & Fan Fei & Cenglin Xu & Xiuxiu Liu & Shuang Wang & Yeping Ruan & Jinggen Liu & Shumin Duan & Zhong Chen & Yi Wang, 2022. "Activated astrocytes attenuate neocortical seizures in rodent models through driving Na+-K+-ATPase," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Coralie Hérent & Séverine Diem & Giovanni Usseglio & Gilles Fortin & Julien Bouvier, 2023. "Upregulation of breathing rate during running exercise by central locomotor circuits in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Joseph W. Arthurs & Anna J. Bowen & Richard D. Palmiter & Nathan A. Baertsch, 2023. "Parabrachial tachykinin1-expressing neurons involved in state-dependent breathing control," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Zhao, Jinyi & Yu, Ying & Wang, Qingyun, 2022. "Dynamical regulation of epileptiform discharges caused by abnormal astrocyte function with optogenetic stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Patrick S. Hosford & Jack A. Wells & Shereen Nizari & Isabel N. Christie & Shefeeq M. Theparambil & Pablo A. Castro & Anna Hadjihambi & L. Felipe Barros & Iván Ruminot & Mark F. Lythgoe & Alexander V., 2022. "CO2 signaling mediates neurovascular coupling in the cerebral cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40812-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.