IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34201-z.html
   My bibliography  Save this article

Hippocampal astrocytes modulate anxiety-like behavior

Author

Listed:
  • Woo-Hyun Cho

    (Seoul National University School of Dentistry)

  • Kyungchul Noh

    (Seoul National University School of Dentistry)

  • Byung Hun Lee

    (Seoul National University)

  • Ellane Barcelon

    (Seoul National University School of Dentistry)

  • Sang Beom Jun

    (Ewha Womans University
    Ewha Womans University
    Ewha Womans University)

  • Hye Yoon Park

    (Seoul National University
    University of Minnesota)

  • Sung Joong Lee

    (Seoul National University School of Dentistry)

Abstract

Astrocytes can affect animal behavior by regulating tripartite synaptic transmission, yet their influence on affective behavior remains largely unclear. Here we showed that hippocampal astrocyte calcium activity reflects mouse affective state during virtual elevated plus maze test using two-photon calcium imaging in vivo. Furthermore, optogenetic hippocampal astrocyte activation elevating intracellular calcium induced anxiolytic behaviors in astrocyte-specific channelrhodopsin 2 (ChR2) transgenic mice (hGFAP-ChR2 mice). As underlying mechanisms, we found ATP released from the activated hippocampal astrocytes increased excitatory synaptic transmission in dentate gyrus (DG) granule cells, which exerted anxiolytic effects. Our data uncover a role of hippocampal astrocytes in modulating mice anxiety-like behaviors by regulating ATP-mediated synaptic homeostasis in hippocampal DG granule cells. Thus, manipulating hippocampal astrocytes activity can be a therapeutic strategy to treat anxiety.

Suggested Citation

  • Woo-Hyun Cho & Kyungchul Noh & Byung Hun Lee & Ellane Barcelon & Sang Beom Jun & Hye Yoon Park & Sung Joong Lee, 2022. "Hippocampal astrocytes modulate anxiety-like behavior," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34201-z
    DOI: 10.1038/s41467-022-34201-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34201-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34201-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. A. Gomez & J. M. Perkins & G. M. Beaudoin & N. B. Cook & S. A. Quraishi & E. A. Szoeke & K. Thangamani & C. W. Tschumi & M. J. Wanat & A. M. Maroof & M. J. Beckstead & P. A. Rosenberg & C. A. Palad, 2019. "Ventral tegmental area astrocytes orchestrate avoidance and approach behavior," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Christian Henneberger & Thomas Papouin & Stéphane H. R. Oliet & Dmitri A. Rusakov, 2010. "Long-term potentiation depends on release of d-serine from astrocytes," Nature, Nature, vol. 463(7278), pages 232-236, January.
    3. Gertrudis Perea & Aimei Yang & Edward S. Boyden & Mriganka Sur, 2014. "Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo," Nature Communications, Nature, vol. 5(1), pages 1-12, May.
    4. Giselle Cheung & Danijela Bataveljic & Josien Visser & Naresh Kumar & Julien Moulard & Glenn Dallérac & Daria Mozheiko & Astrid Rollenhagen & Pascal Ezan & Cédric Mongin & Oana Chever & Alexis-Pierre , 2022. "Physiological synaptic activity and recognition memory require astroglial glutamine," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Thomas Hainmueller & Marlene Bartos, 2018. "Parallel emergence of stable and dynamic memory engrams in the hippocampus," Nature, Nature, vol. 558(7709), pages 292-296, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannah Muysers & Hung-Ling Chen & Johannes Hahn & Shani Folschweiller & Torfi Sigurdsson & Jonas-Frederic Sauer & Marlene Bartos, 2024. "A persistent prefrontal reference frame across time and task rules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Junli Zhao & Jinyi Sun & Yang Zheng & Yanrong Zheng & Yuying Shao & Yulan Li & Fan Fei & Cenglin Xu & Xiuxiu Liu & Shuang Wang & Yeping Ruan & Jinggen Liu & Shumin Duan & Zhong Chen & Yi Wang, 2022. "Activated astrocytes attenuate neocortical seizures in rodent models through driving Na+-K+-ATPase," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Paul J. Lamothe-Molina & Andreas Franzelin & Lennart Beck & Dong Li & Lea Auksutat & Tim Fieblinger & Laura Laprell & Joachim Alhbeck & Christine E. Gee & Matthias Kneussel & Andreas K. Engel & Claus , 2022. "ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Heather C. Ratigan & Seetha Krishnan & Shai Smith & Mark E. J. Sheffield, 2023. "A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Alexandra T. Keinath & Coralie-Anne Mosser & Mark P. Brandon, 2022. "The representation of context in mouse hippocampus is preserved despite neural drift," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Adam Institoris & Milène Vandal & Govind Peringod & Christy Catalano & Cam Ha Tran & Xinzhu Yu & Frank Visser & Cheryl Breiteneder & Leonardo Molina & Baljit S. Khakh & Minh Dang Nguyen & Roger J. Tho, 2022. "Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Moises Freitas-Andrade & Cesar H. Comin & Peter Dyken & Julie Ouellette & Joanna Raman-Nair & Nicole Blakeley & Qing Yan Liu & Sonia Leclerc & Youlian Pan & Ziying Liu & Micaël Carrier & Karan Thakur , 2023. "Astroglial Hmgb1 regulates postnatal astrocyte morphogenesis and cerebrovascular maturation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Dan Chen & Yong Qi & Jia Zhang & Yunlei Yang, 2022. "Deconstruction of a hypothalamic astrocyte-white adipocyte sympathetic axis that regulates lipolysis in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Kirsten Bohmbach & Nicola Masala & Eva M. Schönhense & Katharina Hill & André N. Haubrich & Andreas Zimmer & Thoralf Opitz & Heinz Beck & Christian Henneberger, 2022. "An astrocytic signaling loop for frequency-dependent control of dendritic integration and spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Gray Umbach & Ryan Tan & Joshua Jacobs & Brad E. Pfeiffer & Bradley Lega, 2022. "Flexibility of functional neuronal assemblies supports human memory," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Marta Gómez-Gonzalo & Gabriele Losi & Angela Chiavegato & Micaela Zonta & Mario Cammarota & Marco Brondi & Francesco Vetri & Laura Uva & Tullio Pozzan & Marco de Curtis & Gian Michele Ratto & Giorgio , 2010. "An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold," PLOS Biology, Public Library of Science, vol. 8(4), pages 1-19, April.
    17. Ruy Gómez-Ocádiz & Massimiliano Trippa & Chun-Lei Zhang & Lorenzo Posani & Simona Cocco & Rémi Monasson & Christoph Schmidt-Hieber, 2022. "A synaptic signal for novelty processing in the hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Weilun Sun & Ilseob Choi & Stoyan Stoyanov & Oleg Senkov & Evgeni Ponimaskin & York Winter & Janelle M. P. Pakan & Alexander Dityatev, 2021. "Context value updating and multidimensional neuronal encoding in the retrosplenial cortex," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    19. Zhao, Jinyi & Yu, Ying & Wang, Qingyun, 2022. "Dynamical regulation of epileptiform discharges caused by abnormal astrocyte function with optogenetic stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Alicia Hernández-Vivanco & Nuria Cano-Adamuz & Alberto Sánchez-Aguilera & Alba González-Alonso & Alberto Rodríguez-Fernández & Íñigo Azcoitia & Liset Menendez de la Prida & Pablo Méndez, 2022. "Sex-specific regulation of inhibition and network activity by local aromatase in the mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34201-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.