IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305932.html
   My bibliography  Save this article

Identifying influential spreaders in reversible process

Author

Listed:
  • Qu, Junyi
  • Tang, Ming
  • Liu, Ying
  • Guan, Shuguang

Abstract

Identifying nodes with strong spreading capability is essential to control the spreading dynamics in many real-world scenarios, such as to direct the diffusion of public opinion, promote the adoption of new products and control the spreading of disease in social networks. Previous researches focused on the irreversible propagation process, such as the independent cascade model and the threshold model, which can be categorized into the Susceptible-Infected-Recovered (SIR) model type. The other type is the reversible propagation process with steady state such as the Susceptible-Infected-Susceptible (SIS) model, where the question of identifying important nodes has not received enough attention. In this paper, we study the problem of identifying vital nodes in the SIS spreading process in complex networks. We articulate a single-node control model to evaluate the influence of nodes in the reversible spreading system. By considering network structural and reversible spreading characteristics, we propose a new measure to quantify the node influence based on its neighbors’ centrality and infection risk. By applying the commonly used centralities such as degree and coreness, this new measure can identify the most influential spreaders more accurately than the benchmark centralities. The proposed single-node control model and ranking method open up a new idea in identifying influential spreaders and validate the necessity of introducing the dynamical state in the reversible systems.

Suggested Citation

  • Qu, Junyi & Tang, Ming & Liu, Ying & Guan, Shuguang, 2020. "Identifying influential spreaders in reversible process," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305932
    DOI: 10.1016/j.chaos.2020.110197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Liu, Ying & Tang, Ming & Zhou, Tao & Do, Younghae, 2016. "Identify influential spreaders in complex networks, the role of neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 289-298.
    3. repec:nas:journl:v:115:y:2018:p:7468-7472 is not listed on IDEAS
    4. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yan & Zhang, Ling & Yang, Junwen & Yan, Ming & Li, Haozhan, 2024. "Multi-factor information matrix: A directed weighted method to identify influential nodes in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Yang, Pingle & Meng, Fanyuan & Zhao, Laijun & Zhou, Lixin, 2023. "AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Qu, Junyi & Liu, Ying & Tang, Ming & Guan, Shuguang, 2022. "Identification of the most influential stocks in financial networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Ai, Jun & He, Tao & Su, Zhan & Shang, Lihui, 2022. "Identifying influential nodes in complex networks based on spreading probability," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    2. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    3. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    4. Kathy Fogel & Liping Ma & Randall Morck, 2021. "Powerful independent directors," Financial Management, Financial Management Association International, vol. 50(4), pages 935-983, December.
    5. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    6. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    7. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    8. Xiaojian Ma & Yinghong Ma, 2019. "The Local Triangle Structure Centrality Method to Rank Nodes in Networks," Complexity, Hindawi, vol. 2019, pages 1-16, January.
    9. Lv, Zhiwei & Zhao, Nan & Xiong, Fei & Chen, Nan, 2019. "A novel measure of identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 488-497.
    10. De Masi, G. & Giovannetti, G. & Ricchiuti, G., 2013. "Network analysis to detect common strategies in Italian foreign direct investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1202-1214.
    11. Hyuk-Soo Kwon & Jihong Lee & Sokbae Lee & Ryungha Oh, 2022. "Knowledge spillovers and patent citations: trends in geographic localization, 1976–2015," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(3), pages 123-147, April.
    12. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    13. Inyoung Chae & Andrew T. Stephen & Yakov Bart & Dai Yao, 2017. "Spillover Effects in Seeded Word-of-Mouth Marketing Campaigns," Marketing Science, INFORMS, vol. 36(1), pages 89-104, January.
    14. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    15. Tao, Qizhi & Li, Haoyu & Wu, Qun & Zhang, Ting & Zhu, Yingjun, 2019. "The dark side of board network centrality: Evidence from merger performance," Journal of Business Research, Elsevier, vol. 104(C), pages 215-232.
    16. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    17. Jackie Krafft & Francesco Quatraro, 2011. "The Dynamics of Technological Knowledge: From Linearity to Recombination," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 7, Edward Elgar Publishing.
    18. Audrey Yue & Elmie Nekmat & Annisa R. Beta, 2019. "Digital Literacy Through Digital Citizenship: Online Civic Participation and Public Opinion Evaluation of Youth Minorities in Southeast Asia," Media and Communication, Cogitatio Press, vol. 7(2), pages 100-114.
    19. Giulia Masi & Giorgio Ricchiuti, 2020. "From FDI network topology to macroeconomic instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 133-158, January.
    20. Andrea Pérez & Carlos López & María del Mar García-De los Salmones, 2017. "An empirical exploration of the link between reporting to stakeholders and corporate social responsibility reputation in the Spanish context," Accounting, Auditing & Accountability Journal, Emerald Group Publishing Limited, vol. 30(3), pages 668-698, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.