IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923000048.html
   My bibliography  Save this article

Identifying hidden target nodes for spreading in complex networks

Author

Listed:
  • Yin, Haofei
  • Zhang, Aobo
  • Zeng, An

Abstract

Using measurable data to realize targeted spreading of vital nodes in complex networks is an important issue connecting to various real applications such as commercial advertising, medication selection, and even military attack. However, a significant challenge is that the target nodes are not always known, which hinders the best allocation of initial spreaders to maximize the affected target nodes. To address this issue, this study develops a general framework to map the target node identification problem to the solution of underdetermined equations. Similar to the sparse signal reconstruction problem, it can be solved by the standard compressed sensing algorithm. Our research is completely driven by the limited data fed back after each spread realization. The experimental results show that this decoding method can efficiently achieve a high calculation accuracy both in the artificial networks and the actual networks. Finally, the effects of network structure, infection probability and initial spreader on the accuracy are discussed, aiming to provide theoretical guidance and new enlightenment for practical applications.

Suggested Citation

  • Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000048
    DOI: 10.1016/j.chaos.2023.113103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923000048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Huizi & Zhou, Lingge & Li, Yan & Kang, Bingyi, 2022. "Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Franz Kaiser & Vito Latora & Dirk Witthaut, 2021. "Network isolators inhibit failure spreading in complex networks," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    4. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    5. Patricia M. Gregg & Jian Lin & Mark D. Behn & Laurent G. J. Montési, 2007. "Spreading rate dependence of gravity anomalies along oceanic transform faults," Nature, Nature, vol. 448(7150), pages 183-187, July.
    6. Zhesi Shen & Wen-Xu Wang & Ying Fan & Zengru Di & Ying-Cheng Lai, 2014. "Reconstructing propagation networks with natural diversity and identifying hidden sources," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    7. Flaviano Morone & Hernán A. Makse, 2015. "Correction: Corrigendum: Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 527(7579), pages 544-544, November.
    8. Yang, Anzhi & Huang, Xianying & Cai, Xiumei & Zhu, Xiaofei & Lu, Ling, 2019. "ILSR rumor spreading model with degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    9. Qu, Junyi & Tang, Ming & Liu, Ying & Guan, Shuguang, 2020. "Identifying influential spreaders in reversible process," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Weiping Wang & Saini Yang & H. Eugene Stanley & Jianxi Gao, 2019. "Local floods induce large-scale abrupt failures of road networks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    11. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    12. Kuikka, Vesa & Monsivais, Daniel & Kaski, Kimmo K., 2022. "Influence spreading model in analysing ego-centric social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    13. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.
    14. Li, Qian & Zhou, Tao & Lü, Linyuan & Chen, Duanbing, 2014. "Identifying influential spreaders by weighted LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 47-55.
    15. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    16. Jianxi Gao & Yang-Yu Liu & Raissa M. D'Souza & Albert-László Barabási, 2014. "Target control of complex networks," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Haoming & Wang, Shuangling & Yan, Xuefeng & Zhang, Kecheng, 2024. "Node importance evaluation method of complex network based on the fusion gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Zheng & Lv, Yiqin & Song, Yiping & Wang, Qi, 2024. "Data labeling through the centralities of co-reference networks improves the classification accuracy of scientific papers," Journal of Informetrics, Elsevier, vol. 18(2).
    2. Almeira, Nahuel & Perotti, Juan Ignacio & Chacoma, Andrés & Billoni, Orlando Vito, 2021. "Explosive dismantling of two-dimensional random lattices under betweenness centrality attacks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Liu, Ying & Tang, Ming & Zhou, Tao & Do, Younghae, 2016. "Identify influential spreaders in complex networks, the role of neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 289-298.
    4. Wang, Yan & Zhang, Ling & Yang, Junwen & Yan, Ming & Li, Haozhan, 2024. "Multi-factor information matrix: A directed weighted method to identify influential nodes in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Ai, Jun & He, Tao & Su, Zhan & Shang, Lihui, 2022. "Identifying influential nodes in complex networks based on spreading probability," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Hou, Lei, 2022. "Network versus content: The effectiveness in identifying opinion leaders in an online social network with empirical evaluation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    7. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    8. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    9. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    10. Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    11. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    12. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    13. Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    14. Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
    15. Xia, Ling-Ling & Song, Yu-Rong & Li, Chan-Chan & Jiang, Guo-Ping, 2018. "Improved targeted immunization strategies based on two rounds of selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 540-547.
    16. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    17. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    18. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    19. Dong, Yafang & Huo, Liang'an & Zhao, Laijun, 2022. "An improved two-layer model for rumor propagation considering time delay and event-triggered impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.