IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i4p987-994.html
   My bibliography  Save this article

Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks

Author

Listed:
  • Zhao, Laijun
  • Qiu, Xiaoyan
  • Wang, Xiaoli
  • Wang, Jiajia

Abstract

The SIHR rumor spreading model with consideration of the forgetting and remembering mechanisms was studied in homogeneous networks. We further investigate the properties of the SIHR model in inhomogeneous networks. The SIHR model is refined and mean-field equations are derived to describe the dynamics of the rumor spreading model in inhomogeneous networks. Steady-state analysis is carried out, which shows no spreading threshold existing. Numerical simulations are conducted in a BA scale-free network. The simulation results show that the network topology exerts significant influences on the rumor spreading: In comparison with the ER network, the rumor spreads faster and the final size of the rumor is smaller in BA scale-free network; the forgetting and remembering mechanisms greatly impact the final size of the rumor. Finally, through the numerical simulation, we examine the effects that the spreading rate and the stifling rate have on the the influence of the rumor. In addition, the no threshold result is verified.

Suggested Citation

  • Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:987-994
    DOI: 10.1016/j.physa.2012.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112009296
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buzna, Lubos & Peters, Karsten & Helbing, Dirk, 2006. "Modelling the dynamics of disaster spreading in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 132-140.
    2. Galam, Serge, 2004. "Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 453-460.
    3. J. Gu & W. Li & X. Cai, 2008. "The effect of the forget-remember mechanism on spreading," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(2), pages 247-255, March.
    4. Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
    5. Galam, Serge & Jacobs, Frans, 2007. "The role of inflexible minorities in the breaking of democratic opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 366-376.
    6. Galam, Serge, 2003. "Modelling rumors: the no plane Pentagon French hoax case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 571-580.
    7. Nekovee, M. & Moreno, Y. & Bianconi, G. & Marsili, M., 2007. "Theory of rumour spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 457-470.
    8. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Chen, Yucheng & Wang, Jiajia & Huang, Wei, 2011. "Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2619-2625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Bin & Han, Shui-hua & Jin, Zhen, 2016. "Modeling of knowledge transmission by considering the level of forgetfulness in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 277-287.
    2. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    3. Wang, Jiajia & Zhao, Laijun & Huang, Rongbing, 2014. "2SI2R rumor spreading model in homogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 153-161.
    4. Zhao, Zhen-jun & Liu, Yong-mei & Wang, Ke-xi, 2016. "An analysis of rumor propagation based on propagation force," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 263-271.
    5. Nizamani, Sarwat & Memon, Nasrullah & Galam, Serge, 2014. "From public outrage to the burst of public violence: An epidemic-like model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 620-630.
    6. Liu, Yun & Diao, Su-Meng & Zhu, Yi-Xiang & Liu, Qing, 2016. "SHIR competitive information diffusion model for online social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 543-553.
    7. Sun, Ling & Liu, Yun & Bartolacci, Michael R. & Ting, I-Hsien, 2016. "A multi information dissemination model considering the interference of derivative information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 541-548.
    8. repec:eee:phsmap:v:490:y:2018:i:c:p:488-496 is not listed on IDEAS
    9. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    10. Liu, Yu & Wang, Bai & Wu, Bin & Shang, Suiming & Zhang, Yunlei & Shi, Chuan, 2016. "Characterizing super-spreading in microblog: An epidemic-based information propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 202-218.
    11. Huo, Liang’an & Song, Naixiang, 2016. "Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 73-84.
    12. repec:eee:phsmap:v:484:y:2017:i:c:p:440-452 is not listed on IDEAS
    13. Huo, Liang'an & Ma, Chenyang, 2017. "Dynamical analysis of rumor spreading model with impulse vaccination and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 653-665.
    14. Xia, Ling-Ling & Jiang, Guo-Ping & Song, Bo & Song, Yu-Rong, 2015. "Rumor spreading model considering hesitating mechanism in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 295-303.
    15. Giorno, Virginia & Spina, Serena, 2016. "Rumor spreading models with random denials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 569-576.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:987-994. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.