IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012347.html
   My bibliography  Save this article

A neural diffusion model for identifying influential nodes in complex networks

Author

Listed:
  • Ahmad, Waseem
  • Wang, Bang

Abstract

Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.

Suggested Citation

  • Ahmad, Waseem & Wang, Bang, 2024. "A neural diffusion model for identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012347
    DOI: 10.1016/j.chaos.2024.115682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Zhao, Shuying & Sun, Shaowei, 2023. "Identification of node centrality based on Laplacian energy of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Luis E C Rocha & Fredrik Liljeros & Petter Holme, 2011. "Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-9, March.
    5. Yin, Rongrong & Li, Linhui & Wang, Yumeng & Lang, Chun & Hao, Zhenyang & Zhang, Le, 2024. "Response to the comment on “Identifying critical nodes in complex networks based on distance Laplacian energy”," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. Wang, Jinping & Sun, Shaowei, 2024. "Comment on the paper “Identifying critical nodes in complex networks based on distance Laplacian energy”," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    7. Yin, Rongrong & Li, Linhui & Wang, Yumeng & Lang, Chun & Hao, Zhenyang & Zhang, Le, 2024. "Identifying critical nodes in complex networks based on distance Laplacian energy," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Yuanzhi Yang & Lei Yu & Xing Wang & Siyi Chen & You Chen & Yipeng Zhou, 2019. "A novel method to identify influential nodes in complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(02), pages 1-14, December.
    9. Wang, Yan & Zhang, Ling & Yang, Junwen & Yan, Ming & Li, Haozhan, 2024. "Multi-factor information matrix: A directed weighted method to identify influential nodes in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    10. Yang, Yuanzhi & Yu, Lei & Wang, Xing & Zhou, Zhongliang & Chen, You & Kou, Tian, 2019. "A novel method to evaluate node importance in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    11. Tiago A. Schieber & Laura C. Carpi & Panos M. Pardalos & Cristina Masoller & Albert Díaz-Guilera & Martín G. Ravetti, 2023. "Diffusion capacity of single and interconnected networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Wang, Jinping & Sun, Shaowei, 2024. "Identifying influential nodes: A new method based on dynamic propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    13. Nan Zhao & Jingjing Bao & Nan Chen, 2020. "Ranking Influential Nodes in Complex Networks with Information Entropy Method," Complexity, Hindawi, vol. 2020, pages 1-15, June.
    14. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ullah, Aman & Meng, Yahui, 2025. "Finding influential nodes via graph embedding and hybrid centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullah, Aman & Meng, Yahui, 2025. "Finding influential nodes via graph embedding and hybrid centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    2. Fu, Xin & Qiang, Yongjie & Liu, Xuxu & Jiang, Ying & Cui, Zhiwei & Zhang, Deyu & Wang, Jianwei, 2022. "Will multi-industry supply chains' resilience under the impact of COVID-19 pandemic be different? A perspective from China's highway freight transport," Transport Policy, Elsevier, vol. 118(C), pages 165-178.
    3. Wang, Jinping & Sun, Shaowei, 2024. "Identifying influential nodes: A new method based on dynamic propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    4. Kouam, Willie & Hayel, Yezekael & Deugoué, Gabriel & Kamhoua, Charles, 2025. "A novel centrality measure for analyzing lateral movement in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    5. Wang, Jinping & Sun, Shaowei, 2024. "Comment on the paper “Identifying critical nodes in complex networks based on distance Laplacian energy”," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. Mohammadi, Sohameh & Nadimi-Shahraki, Mohammad H. & Beheshti, Zahra & Zamanifar, Kamran, 2024. "Improved information diffusion models based on a new two-sided sign-aware matching framework in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    7. Yin, Rongrong & Li, Linhui & Wang, Yumeng & Lang, Chun & Hao, Zhenyang & Zhang, Le, 2024. "Identifying critical nodes in complex networks based on distance Laplacian energy," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    9. Guo, Haoming & Yan, Xuefeng, 2025. "Node influence evaluation method based on saturation propagation probability and multi-level propagation," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    10. Al-Azim, Nouran Ayman R. Abd & Gharib, Tarek F. & Afify, Yasmine & Hamdy, Mohamed, 2020. "Influence propagation: Interest groups and node ranking models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    11. Wang, Yan & Zhang, Ling & Yang, Junwen & Yan, Ming & Li, Haozhan, 2024. "Multi-factor information matrix: A directed weighted method to identify influential nodes in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    12. Guo, Haoming & Wang, Shuangling & Yan, Xuefeng & Zhang, Kecheng, 2024. "Node importance evaluation method of complex network based on the fusion gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    13. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    14. De Masi, G. & Giovannetti, G. & Ricchiuti, G., 2013. "Network analysis to detect common strategies in Italian foreign direct investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1202-1214.
    15. Hyuk-Soo Kwon & Jihong Lee & Sokbae Lee & Ryungha Oh, 2022. "Knowledge spillovers and patent citations: trends in geographic localization, 1976–2015," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(3), pages 123-147, April.
    16. Wang, Peipei & Zheng, Xinqi & Chen, Yuanming & Xu, Yazhou, 2024. "A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    17. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    18. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    19. Tao, Qizhi & Li, Haoyu & Wu, Qun & Zhang, Ting & Zhu, Yingjun, 2019. "The dark side of board network centrality: Evidence from merger performance," Journal of Business Research, Elsevier, vol. 104(C), pages 215-232.
    20. Jackie Krafft & Francesco Quatraro, 2011. "The Dynamics of Technological Knowledge: From Linearity to Recombination," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 7, Edward Elgar Publishing.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.