IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v195y2025ics0960077925003121.html
   My bibliography  Save this article

Node influence evaluation method based on saturation propagation probability and multi-level propagation

Author

Listed:
  • Guo, Haoming
  • Yan, Xuefeng

Abstract

One of the key areas in network science is assessing node influence in complex networks. Most current methods rely on a constant propagation probability to evaluate node importance, which often fails to capture the dynamic nature of information propagation. To address this limitation, we propose a novel method for node influence evaluation based on saturation propagation probability (SPP) and multi-level propagation characteristics. First, we define the saturation propagation probability (SPP) to model the non-linear dynamics of information propagation, which enables a more accurate evaluation of a node’s propagation influence by dynamically adjusting its propagation ability. Second, we account for both same-order and different-order neighbor interactions in the propagation process, incorporating network topology for a more comprehensive evaluation. Through extensive experiments comparing SPP with seven existing methods across ten networks, we demonstrate its superior performance. Specifically, the SPP method achieves optimal ranking accuracy in all ten networks, delivers the best node similarity performance on 80% of the networks, and consistently performs well in terms of Kendall’s coefficient τ under varying infection rates. These results confirm the method’s effectiveness and applicability in complex networks.

Suggested Citation

  • Guo, Haoming & Yan, Xuefeng, 2025. "Node influence evaluation method based on saturation propagation probability and multi-level propagation," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925003121
    DOI: 10.1016/j.chaos.2025.116299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    3. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Zhao, Laijun & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "SIR rumor spreading model in the new media age," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 995-1003.
    5. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    6. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    7. Jean-François Rual & Kavitha Venkatesan & Tong Hao & Tomoko Hirozane-Kishikawa & Amélie Dricot & Ning Li & Gabriel F. Berriz & Francis D. Gibbons & Matija Dreze & Nono Ayivi-Guedehoussou & Niels Klitg, 2005. "Towards a proteome-scale map of the human protein–protein interaction network," Nature, Nature, vol. 437(7062), pages 1173-1178, October.
    8. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    9. Wang, Jinping & Sun, Shaowei, 2024. "Identifying influential nodes: A new method based on dynamic propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    2. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    3. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    4. Zhu, Xiaoyu & Hao, Rongxia, 2025. "Finding influential nodes in complex networks by integrating nodal intrinsic and extrinsic centrality," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    5. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    6. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    7. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    8. Sun, Hong-liang & Chen, Duan-bing & He, Jia-lin & Ch’ng, Eugene, 2019. "A voting approach to uncover multiple influential spreaders on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 303-312.
    9. Liu, Ying & Tang, Ming & Zhou, Tao & Do, Younghae, 2016. "Identify influential spreaders in complex networks, the role of neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 289-298.
    10. Yang, Xu-Hua & Xiong, Zhen & Ma, Fangnan & Chen, Xiaoze & Ruan, Zhongyuan & Jiang, Peng & Xu, Xinli, 2021. "Identifying influential spreaders in complex networks based on network embedding and node local centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    11. Wang, Jinping & Sun, Shaowei, 2024. "Identifying influential nodes: A new method based on dynamic propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    12. Xiaojian Ma & Yinghong Ma, 2019. "The Local Triangle Structure Centrality Method to Rank Nodes in Networks," Complexity, Hindawi, vol. 2019, pages 1-16, January.
    13. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Meng, Lei & Xu, Guiqiong & Dong, Chen, 2025. "An improved gravity model for identifying influential nodes in complex networks considering asymmetric attraction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    15. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    16. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
    17. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    18. Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
    19. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    20. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925003121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.