Improved information diffusion models based on a new two-sided sign-aware matching framework in complex networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.115298
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Yuejiao & Zhang, Yatao & Yang, Fei & Li, Dong & Sun, Xin & Ma, Jun, 2021. "Time-sensitive Positive Influence Maximization in signed social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
- Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Lee, Kyu-Min & Lee, Sungmin & Min, Byungjoon & Goh, K.-I., 2023. "Threshold cascade dynamics on signed random networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Wang, Yan & Zhang, Ling & Yang, Junwen & Yan, Ming & Li, Haozhan, 2024. "Multi-factor information matrix: A directed weighted method to identify influential nodes in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
- Dong Li & Zhi-Ming Xu & Nilanjan Chakraborty & Anika Gupta & Katia Sycara & Sheng Li, 2014. "Polarity Related Influence Maximization in Signed Social Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
- repec:plo:pone00:0224177 is not listed on IDEAS
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Corsin, Julien & Zino, Lorenzo & Ye, Mengbin, 2025. "An evidence-accumulating drift–diffusion model of competing information spread on networks," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Xiaoyu & Hao, Rongxia, 2025. "Finding influential nodes in complex networks by integrating nodal intrinsic and extrinsic centrality," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
- Ahmad, Waseem & Wang, Bang, 2024. "A neural diffusion model for identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
- Wang, Yan & Zhang, Ling & Yang, Junwen & Yan, Ming & Li, Haozhan, 2024. "Multi-factor information matrix: A directed weighted method to identify influential nodes in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Wu, Jian & Qiu, Tian & Chen, Guang, 2024. "A general deep-learning approach to node importance identification," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
- Wang, Peng & Ling, Guang & Zhao, Pei & Pan, Wenqiu & Ge, Ming-Feng, 2024. "Identification of important nodes in multi-layer hypergraphs based on fuzzy gravity model and node centrality distribution characteristics," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
- Zhao, Jie & Wang, Zhen & Yu, Dengxiu & Cao, Jinde & Cheong, Kang Hao, 2024. "Swarm intelligence for protecting sensitive identities in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Yin, Haofei & Cui, Xiaohua & Zeng, An, 2024. "An innovative defense strategy against targeted spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
- Fan Yang & Linxi Xu & Jiayin Wang, 2025. "Spatial Morphology of Urban Residential Space: A Complex Network Analysis Integrating Social and Physical Space," Sustainability, MDPI, vol. 17(5), pages 1-21, March.
- Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
- Li, Jing & Lu, Qing-Chang & Xu, Peng-Cheng & Liu, Liping & Wang, Shixin, 2025. "Critical station identification for cascading failure mitigation considering the Lyapunov-stability of metro stations," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
- Lin Zhang & Kan Li, 2021. "Influence Maximization Based on Backward Reasoning in Online Social Networks," Mathematics, MDPI, vol. 9(24), pages 1-17, December.
- Yin, Rongrong & Li, Linhui & Wang, Yumeng & Lang, Chun & Hao, Zhenyang & Zhang, Le, 2024. "Identifying critical nodes in complex networks based on distance Laplacian energy," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Meng, Bo & Rezaeipanah, Amin, 2025. "Development of a multidimensional centrality metric for ranking nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
- Li, Ai-Wen & Liu, Ya-Fang & Zhou, Jian-Lin & Zeng, An & Xu, Xiao-Ke & Fan, Ying, 2025. "Dynamic immunization for disinformation spreading on signed social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
- Shao, Cunqi & Wu, Mincheng & He, Shibo, 2024. "Improving community detection in blockmodel by distance-based observation selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
- Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Nikougoftar, Elaheh, 2024. "Strategic node identification in complex network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
- Li, Shuyu & Li, Xiang, 2023. "Influence maximization in hypergraphs: A self-optimizing algorithm based on electrostatic field," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Guo, Haoming & Yan, Xuefeng, 2025. "Node influence evaluation method based on saturation propagation probability and multi-level propagation," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
More about this item
Keywords
Complex networks; Information diffusion model; Influence propagation; Influence maximization; Viral marketing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924008506. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.