IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921010900.html
   My bibliography  Save this article

Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis

Author

Listed:
  • Cui, Huizi
  • Zhou, Lingge
  • Li, Yan
  • Kang, Bingyi

Abstract

How to measure the complexity of physiological signals in biological system is an open problem. Various entropy algorithms have been presented, but most of them fail to account for the complexity of time series with high accuracy. In this paper, the concept of Belief Entropy-of-Entropy (BEoE) is introduced, it expands entropy of entropy (EoE) into belief structure, and computes quadratic belief entropy to characterize the complexity of biological systems based on multiple time scales. The influence of inherent complex fluctuation, length bound, correlation of time windows, etc. is considered in the BEoE analysis. Application and discussion demonstrate that BEoE has better accurateness and applicability than many existing entropy algorithms.

Suggested Citation

  • Cui, Huizi & Zhou, Lingge & Li, Yan & Kang, Bingyi, 2022. "Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010900
    DOI: 10.1016/j.chaos.2021.111736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, Luiz Eduardo Virgilio & Cabella, Brenno Caetano Troca & Neves, Ubiraci Pereira da Costa & Murta Junior, Luiz Otavio, 2015. "Multiscale entropy-based methods for heart rate variability complexity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 143-152.
    2. Wang, Mengjiao & Liao, Xiaohan & Deng, Yong & Li, Zhijun & Su, Yongxin & Zeng, Yicheng, 2020. "Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Xiaoyan Su & Sankaran Mahadevan & Peida Xu & Yong Deng, 2015. "Dependence Assessment in Human Reliability Analysis Using Evidence Theory and AHP," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1296-1316, July.
    4. Wang, Ying-Ming & Yang, Jian-Bo & Xu, Dong-Ling & Chin, Kwai-Sang, 2006. "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees," European Journal of Operational Research, Elsevier, vol. 175(1), pages 35-66, November.
    5. Huang, Zhiming & Yang, Lin & Jiang, Wen, 2019. "Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 417-428.
    6. Lei Chen & Ling Diao & Jun Sang, 2019. "A novel weighted evidence combination rule based on improved entropy function with a diagnosis application," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477188, January.
    7. Xu, Dong-Ling & Yang, Jian-Bo & Wang, Ying-Ming, 2006. "The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1914-1943, November.
    8. Hsu, Chang Francis & Lin, Ping-Yen & Chao, Hsuan-Hao & Hsu, Long & Chi, Sien, 2019. "Average Entropy: Measurement of disorder for cardiac RR interval signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Zhao, Tong & Li, Zhen & Deng, Yong, 2023. "Information fractal dimension of Random Permutation Set," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Yu, Zihan & Deng, Yong, 2022. "Derive power law distribution with maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Xingyuan Chen & Yong Deng, 2022. "An Evidential Software Risk Evaluation Model," Mathematics, MDPI, vol. 10(13), pages 1-19, July.
    5. Wang, Minggang & Hua, Chenyu & Zhu, Mengrui & Xie, Shangshan & Xu, Hua & Vilela, André L.M. & Tian, Lixin, 2022. "Interrelation measurement based on the multi-layer limited penetrable horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Kharazmi, Omid & Contreras-Reyes, Javier E., 2023. "Deng–Fisher information measure and its extensions: Application to Conway’s Game of Life," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Wang, Gangjin & Wei, Daijun & Li, Xiangbo & Wang, Ningkui, 2023. "A novel method for local anomaly detection of time series based on multi entropy fusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    8. Zeng, Ziyue & Xiao, Fuyuan, 2023. "A new complex belief entropy of χ2 divergence with its application in cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Hu, Yuntong & Xiao, Fuyuan, 2022. "An efficient forecasting method for time series based on visibility graph and multi-subgraph similarity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Li, Siran & Xiao, Fuyuan, 2023. "Normal distribution based on maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Bao, Han & Ding, Ruoyu & Chen, Bei & Xu, Quan & Bao, Bocheng, 2023. "Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Bin & Ni, Ming-Fang, 2009. "A note on article "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 809-812, September.
    2. Ni, Lei & Chen, Yu-wang & de Brujin, Oscar, 2021. "Towards understanding socially influenced vaccination decision making: An integrated model of multiple criteria belief modelling and social network analysis," European Journal of Operational Research, Elsevier, vol. 293(1), pages 276-289.
    3. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.
    4. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    5. Yang, Guo-liang & Yang, Jian-bo & Liu, Wen-bin & Li, Xiao-xuan, 2013. "Cross-efficiency aggregation in DEA models using the evidential-reasoning approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 393-404.
    6. Fu, Chao & Yang, Shan-Lin, 2010. "The group consensus based evidential reasoning approach for multiple attributive group decision analysis," European Journal of Operational Research, Elsevier, vol. 206(3), pages 601-608, November.
    7. Guo, Min & Yang, Jian-Bo & Chin, Kwai-Sang & Wang, Hongwei, 2007. "Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1294-1312, November.
    8. S. Nodoust & A. Mirzazadeh & G.-W. Weber, 2020. "An evidential reasoning approach for production modeling with deteriorating and ameliorating items," Operational Research, Springer, vol. 20(1), pages 1-19, March.
    9. Zhang, Mei-Jing & Wang, Ying-Ming & Li, Ling-Hui & Chen, Sheng-Qun, 2017. "A general evidential reasoning algorithm for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1005-1015.
    10. Karaaslan, Abdulkerim & Gezen, Mesliha, 2022. "The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coefficient," Renewable Energy, Elsevier, vol. 182(C), pages 842-854.
    11. Wang, Ying-Ming, 2009. "Reply to the note on article "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 813-817, September.
    12. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    13. Maddulapalli, Anil Kumar & Yang, Jian-Bo & Xu, Dong-Ling, 2012. "Estimation, modeling, and aggregation of missing survey data for prioritizing customer voices," European Journal of Operational Research, Elsevier, vol. 220(3), pages 762-776.
    14. Deng, Xinyang & Hu, Yong & Chan, Felix T.S. & Mahadevan, Sankaran & Deng, Yong, 2015. "Parameter estimation based on interval-valued belief structures," European Journal of Operational Research, Elsevier, vol. 241(2), pages 579-582.
    15. Hua Zhu & Jianbin Zhao & Yang Xu & Limin Du, 2016. "Interval-Valued Belief Rule Inference Methodology Based on Evidential Reasoning-IRIMER," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1345-1366, November.
    16. Voola, Persis & A., Vinaya Babu, 2017. "Study of aggregation algorithms for aggregating imprecise software requirements’ priorities," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1191-1199.
    17. Shiva Mehrabi-Kandsar & Abolfazl Mirzazadeh & Aref Gholami-Qadikolaei, 2017. "The quality function deployment method under uncertain environment using evidential reasoning: a case study of compressor manufacturing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1867-1884, November.
    18. Dong-Ling Xu, 2012. "An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 195(1), pages 163-187, May.
    19. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. J-B Yang & D-L Xu & X Xie & A K Maddulapalli, 2011. "Multicriteria evidential reasoning decision modelling and analysis—prioritizing voices of customer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1638-1654, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.