IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i1p167-176.html
   My bibliography  Save this article

An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements

Author

Listed:
  • Fu, Chao
  • Yang, Shanlin

Abstract

With the aim of modeling multiple attribute group decision analysis problems with group consensus (GC) requirements, a GC based evidential reasoning approach and further an attribute weight based feedback model are sequentially developed based on an evidential reasoning (ER) approach. In real situations, however, giving precise (crisp) assessments for alternatives is often too restrictive and difficult for experts, due to incompleteness or lack of information. Experts may also find it difficult to give appropriate assessments on specific attributes, due to limitation or lack of knowledge, experience and provided data about the problem domain. In this paper, an ER based consensus model (ERCM) is proposed to deal with these situations, in which experts’ assessments are interval-valued rather than precise. Correspondingly, predefined interval-valued GC (IGC) requirements need to be reached after group analysis and discussion within specified times. Also, the process of reaching IGC is accelerated by a feedback mechanism including identification rules at three levels, consisting of the attribute, alternative and global levels, and a suggestion rule. Particularly, recommendations on assessments in the suggestion rule are constructed based on recommendations on their lower and upper bounds detected by the identification rule at a specific level. A preferentially developed industry selection problem is solved by the ERCM to demonstrate its detailed implementation process, validity, and applicability.

Suggested Citation

  • Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:167-176
    DOI: 10.1016/j.ejor.2012.05.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.05.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi, 2008. "On consistency measures of linguistic preference relations," European Journal of Operational Research, Elsevier, vol. 189(2), pages 430-444, September.
    2. Wang, Ying-Ming & Yang, Jian-Bo & Xu, Dong-Ling & Chin, Kwai-Sang, 2006. "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees," European Journal of Operational Research, Elsevier, vol. 175(1), pages 35-66, November.
    3. Alfredo Altuzarra & José María Moreno-Jiménez & Manuel Salvador, 2010. "Consensus Building in AHP-Group Decision Making: A Bayesian Approach," Operations Research, INFORMS, vol. 58(6), pages 1755-1773, December.
    4. Kim, Soung Hie & Ahn, Byeong Seok, 1999. "Interactive group decision making procedure under incomplete information," European Journal of Operational Research, Elsevier, vol. 116(3), pages 498-507, August.
    5. F. J. Cabrerizo & S. Alonso & E. Herrera-Viedma, 2009. "A Consensus Model For Group Decision Making Problems With Unbalanced Fuzzy Linguistic Information," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 109-131.
    6. Noel Bryson, 1997. "Supporting consensus formation in Group Support Systems using the Qualitative Discriminant Process," Annals of Operations Research, Springer, vol. 71(0), pages 75-91, January.
    7. Fu, Chao & Yang, Shan-Lin, 2010. "The group consensus based evidential reasoning approach for multiple attributive group decision analysis," European Journal of Operational Research, Elsevier, vol. 206(3), pages 601-608, November.
    8. Yang, J.B. & Wang, Y.M. & Xu, D.L. & Chin, K.S., 2006. "The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties," European Journal of Operational Research, Elsevier, vol. 171(1), pages 309-343, May.
    9. Yang, Jian-Bo, 2001. "Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties," European Journal of Operational Research, Elsevier, vol. 131(1), pages 31-61, May.
    10. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    11. Xu, Dong-Ling & Yang, Jian-Bo & Wang, Ying-Ming, 2006. "The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1914-1943, November.
    12. Peter H. Farquhar, 1984. "State of the Art---Utility Assessment Methods," Management Science, INFORMS, vol. 30(11), pages 1283-1300, November.
    13. Guo, Min & Yang, Jian-Bo & Chin, Kwai-Sang & Wang, Hongwei, 2007. "Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1294-1312, November.
    14. Kim, Soung Hie & Choi, Sang Hyun & Kim, Jae Kyeong, 1999. "An interactive procedure for multiple attribute group decision making with incomplete information: Range-based approach," European Journal of Operational Research, Elsevier, vol. 118(1), pages 139-152, October.
    15. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.
    16. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianghong Zhu & Yanlai Li, 2018. "Green Supplier Selection Based on Consensus Process and Integrating Prioritized Operator and Choquet Integral," Sustainability, MDPI, vol. 10(8), pages 1-22, August.
    2. Sun, Bingzhen & Ma, Weimin, 2015. "An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application," Omega, Elsevier, vol. 51(C), pages 83-92.
    3. Cabrerizo, Francisco Javier & Herrera-Viedma, Enrique & Pedrycz, Witold, 2013. "A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts," European Journal of Operational Research, Elsevier, vol. 230(3), pages 624-633.
    4. González-Arteaga, T. & Alcantud, J.C.R. & de Andrés Calle, R., 2016. "A cardinal dissensus measure based on the Mahalanobis distance," European Journal of Operational Research, Elsevier, vol. 251(2), pages 575-585.
    5. Zhibin Wu & Jiuping Xu & Zeshui Xu, 2016. "A multiple attribute group decision making framework for the evaluation of lean practices at logistics distribution centers," Annals of Operations Research, Springer, vol. 247(2), pages 735-757, December.
    6. Tim Chen & Hendri Daleanu & Chi-Huey Wong* & J.C.-Y. Chen, 2019. "Mathematical Derives of Evolutionary Algorithms for Multiple Criteria Decision Making," Sumerianz Journal of Scientific Research, Sumerianz Publication, vol. 2(1), pages 5-11, 01-2019.
    7. Chao Fu & Wenjun Chang, 2024. "A Markov Chain-Based Group Consensus Method with Unknown Parameters," Group Decision and Negotiation, Springer, vol. 33(5), pages 1019-1048, October.
    8. Xue, Min & Fu, Chao & Yang, Shan-Lin, 2020. "Group consensus reaching based on a combination of expert weight and expert reliability," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    9. Min Xue & Chao Fu & Shan-Lin Yang, 2021. "Dynamic Expert Reliability Based Feedback Mechanism in Consensus Reaching Process with Distributed Preference Relations," Group Decision and Negotiation, Springer, vol. 30(2), pages 341-375, April.
    10. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    11. Yin Liu & Wenjun Chang & Xuefei Jia, 2023. "A Group Consensus Model for Multiple Attributes Group Decision Making with Interval Belief Distribution and Interval Distributed Preference Relation," Group Decision and Negotiation, Springer, vol. 32(3), pages 701-727, June.
    12. Yutong Chen & Yongchuan Tang, 2021. "An Improved Approach of Incomplete Information Fusion and Its Application in Sensor Data-Based Fault Diagnosis," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    13. Fu, Chao & Yang, Jian-Bo & Yang, Shan-Lin, 2015. "A group evidential reasoning approach based on expert reliability," European Journal of Operational Research, Elsevier, vol. 246(3), pages 886-893.
    14. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    15. Fu, Chao & Chang, Wenjun & Xue, Min & Yang, Shanlin, 2019. "Multiple criteria group decision making with belief distributions and distributed preference relations," European Journal of Operational Research, Elsevier, vol. 273(2), pages 623-633.
    16. Wenjun Chang & Chao Fu & Nanping Feng & Shanlin Yang, 2021. "Multi-criteria Group Decision Making with Various Ordinal Assessments," Group Decision and Negotiation, Springer, vol. 30(6), pages 1285-1314, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.
    2. Fu, Chao & Yang, Shan-Lin, 2010. "The group consensus based evidential reasoning approach for multiple attributive group decision analysis," European Journal of Operational Research, Elsevier, vol. 206(3), pages 601-608, November.
    3. Fu, Chao & Yang, Jian-Bo & Yang, Shan-Lin, 2015. "A group evidential reasoning approach based on expert reliability," European Journal of Operational Research, Elsevier, vol. 246(3), pages 886-893.
    4. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    5. Zhang, Mei-Jing & Wang, Ying-Ming & Li, Ling-Hui & Chen, Sheng-Qun, 2017. "A general evidential reasoning algorithm for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1005-1015.
    6. Sun, Bingzhen & Ma, Weimin, 2015. "An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application," Omega, Elsevier, vol. 51(C), pages 83-92.
    7. Chao Fu & Dong-Ling Xu, 2016. "Determining attribute weights to improve solution reliability and its application to selecting leading industries," Annals of Operations Research, Springer, vol. 245(1), pages 401-426, October.
    8. Dong-Ling Xu, 2012. "An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 195(1), pages 163-187, May.
    9. González-Arteaga, T. & Alcantud, J.C.R. & de Andrés Calle, R., 2016. "A cardinal dissensus measure based on the Mahalanobis distance," European Journal of Operational Research, Elsevier, vol. 251(2), pages 575-585.
    10. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    11. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    12. Guo, Min & Yang, Jian-Bo & Chin, Kwai-Sang & Wang, Hongwei, 2007. "Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1294-1312, November.
    13. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    14. Maddulapalli, Anil Kumar & Yang, Jian-Bo & Xu, Dong-Ling, 2012. "Estimation, modeling, and aggregation of missing survey data for prioritizing customer voices," European Journal of Operational Research, Elsevier, vol. 220(3), pages 762-776.
    15. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    16. J-B Yang & D-L Xu & X Xie & A K Maddulapalli, 2011. "Multicriteria evidential reasoning decision modelling and analysis—prioritizing voices of customer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1638-1654, September.
    17. Yang, Guo-liang & Yang, Jian-bo & Liu, Wen-bin & Li, Xiao-xuan, 2013. "Cross-efficiency aggregation in DEA models using the evidential-reasoning approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 393-404.
    18. Fernandez, Eduardo & Olmedo, Rafael, 2013. "An outranking-based general approach to solving group multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 225(3), pages 497-506.
    19. Merigó, José M. & Casanovas, Montserrat & Yang, Jian-Bo, 2014. "Group decision making with expertons and uncertain generalized probabilistic weighted aggregation operators," European Journal of Operational Research, Elsevier, vol. 235(1), pages 215-224.
    20. Behnam Vahdani & Meghdad Salimi & Seyed Meysam Mousavi, 2017. "A New Compromise Solution Model Based on Dantzig–Wolfe Decomposition for Solving Belief Multi-Objective Nonlinear Programming Problems with Block Angular Structure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 333-387, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:167-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.