IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i1p1550147718823990.html
   My bibliography  Save this article

A novel weighted evidence combination rule based on improved entropy function with a diagnosis application

Author

Listed:
  • Lei Chen
  • Ling Diao
  • Jun Sang

Abstract

Managing conflict in Dempster–Shafer theory is a popular topic. In this article, we propose a novel weighted evidence combination rule based on improved entropy function. This newly proposed approach can be mainly divided into two steps. First, the initial weight will be determined on the basis of the distance of evidence. Then, this initial weight will be modified using improved entropy function. This new method converges faster when handling high conflicting evidences and greatly reduces uncertainty of decisions, which can be demonstrated by a numerical example where the belief degree is raised up to 0.9939 when five evidences are in conflict, an application in faulty diagnosis where belief degree is increased hugely from 0.8899 to 0.9416 when compared with our previous works, and a real-life medical diagnosis application where the uncertainty of decision is reduced to nearly 0 and the belief degree is raised up to 0.9989.

Suggested Citation

  • Lei Chen & Ling Diao & Jun Sang, 2019. "A novel weighted evidence combination rule based on improved entropy function with a diagnosis application," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477188, January.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:1:p:1550147718823990
    DOI: 10.1177/1550147718823990
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718823990
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718823990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyan Su & Sankaran Mahadevan & Peida Xu & Yong Deng, 2015. "Dependence Assessment in Human Reliability Analysis Using Evidence Theory and AHP," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1296-1316, July.
    2. Yong Deng & Yang Liu & Deyun Zhou, 2015. "An Improved Genetic Algorithm with Initial Population Strategy for Symmetric TSP," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-6, October.
    3. Lei Chen & Ling Diao & Jun Sang, 2018. "Weighted Evidence Combination Rule Based on Evidence Distance and Uncertainty Measure: An Application in Fault Diagnosis," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, January.
    4. Deyun Zhou & Yongchuan Tang & Wen Jiang, 2017. "A modified belief entropy in Dempster-Shafer framework," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    5. Beynon, Malcolm & Curry, Bruce & Morgan, Peter, 2000. "The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modelling," Omega, Elsevier, vol. 28(1), pages 37-50, February.
    6. Du, Wen-Bo & Gao, Yang & Liu, Chen & Zheng, Zheng & Wang, Zhen, 2015. "Adequate is better: particle swarm optimization with limited-information," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 832-838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Huizi & Zhou, Lingge & Li, Yan & Kang, Bingyi, 2022. "Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Shijun Xu & Yi Hou & Xinpu Deng & Peibo Chen & Kewei Ouyang & Ye Zhang, 2021. "A novel divergence measure in Dempster–Shafer evidence theory based on pignistic probability transform and its application in multi-sensor data fusion," International Journal of Distributed Sensor Networks, , vol. 17(7), pages 15501477211, July.
    3. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Yu Zhang & Wen Jiang & Xinyang Deng, 2019. "Fault diagnosis method based on time domain weighted data aggregation and information fusion," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Wei, Bo & Du, Yuxian & Xiao, Fuyuan & Deng, Yong, 2016. "Identifying influential spreaders by weight degree centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 1-7.
    2. Moral-García, Serafín & Abellán, Joaquín, 2020. "Critique of modified Deng entropies under the evidence theory," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    5. Lianmeng Jiao & Quan Pan & Yan Liang & Xiaoxue Feng & Feng Yang, 2016. "Combining sources of evidence with reliability and importance for decision making," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 87-106, March.
    6. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    7. Li, Siran & Xiao, Fuyuan, 2023. "Normal distribution based on maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Sun, Peng Gang & Sun, Xiya, 2017. "Complete graph model for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 88-97.
    9. Li, Ya & Lan, Xin & Deng, Xinyang & Sadiq, Rehan & Deng, Yong, 2014. "Comprehensive consideration of strategy updating promotes cooperation in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 284-292.
    10. Shardrom Johnson & Jinwu Han & Yuanchen Liu & Li Chen & Xinlin Wu, 2018. "Hybrid Approach with Improved Genetic Algorithm and Simulated Annealing for Thesis Sampling," Future Internet, MDPI, vol. 10(8), pages 1-15, July.
    11. Deyun Zhou & Yongchuan Tang & Wen Jiang, 2017. "An Improved Belief Entropy and Its Application in Decision-Making," Complexity, Hindawi, vol. 2017, pages 1-15, March.
    12. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    13. Rong Yuan & Debiao Meng & Haiqing Li, 2016. "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis," Journal of Risk and Reliability, , vol. 230(6), pages 570-578, December.
    14. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    15. Wang, Ying-Ming & Yang, Jian-Bo & Xu, Dong-Ling & Chin, Kwai-Sang, 2006. "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees," European Journal of Operational Research, Elsevier, vol. 175(1), pages 35-66, November.
    16. Wu, Chong & Barnes, David, 2010. "Formulating partner selection criteria for agile supply chains: A Dempster-Shafer belief acceptability optimisation approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 284-293, June.
    17. Shengwen Yin & Keliang Jin & Yu Bai & Wei Zhou & Zhonggang Wang, 2023. "Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty," Mathematics, MDPI, vol. 11(5), pages 1-19, March.
    18. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    19. Saad Muslet Albogami & Mohd Khairol Anuar Bin Mohd Ariffin & Eris Elianddy Bin Supeni & Kamarul Arifin Ahmad, 2021. "A New Hybrid AHP and Dempster—Shafer Theory of Evidence Method for Project Risk Assessment Problem," Mathematics, MDPI, vol. 9(24), pages 1-30, December.
    20. Jin-Ling Yan & Yong-Jie Xue & Muhammad Mohsin, 2022. "Accessing Occupational Health Risks Posed by Fishermen Based on Fuzzy AHP and IPA Methods: Management and Performance Perspectives," Sustainability, MDPI, vol. 14(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:1:p:1550147718823990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.