IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v241y2015i2p579-582.html
   My bibliography  Save this article

Parameter estimation based on interval-valued belief structures

Author

Listed:
  • Deng, Xinyang
  • Hu, Yong
  • Chan, Felix T.S.
  • Mahadevan, Sankaran
  • Deng, Yong

Abstract

Parameter estimation based on uncertain data represented as belief structures is one of the latest problems in the Dempster–Shafer theory. In this paper, a novel method is proposed for the parameter estimation in the case where belief structures are uncertain and represented as interval-valued belief structures. Within our proposed method, the maximization of likelihood criterion and minimization of estimated parameter’s uncertainty are taken into consideration simultaneously. As an illustration, the proposed method is employed to estimate parameters for deterministic and uncertain belief structures, which demonstrates its effectiveness and versatility.

Suggested Citation

  • Deng, Xinyang & Hu, Yong & Chan, Felix T.S. & Mahadevan, Sankaran & Deng, Yong, 2015. "Parameter estimation based on interval-valued belief structures," European Journal of Operational Research, Elsevier, vol. 241(2), pages 579-582.
  • Handle: RePEc:eee:ejores:v:241:y:2015:i:2:p:579-582
    DOI: 10.1016/j.ejor.2014.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714008066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Peijun & Tanaka, Hideo, 2010. "Decision making with interval probabilities," European Journal of Operational Research, Elsevier, vol. 203(2), pages 444-454, June.
    2. Wang, Ying-Ming & Yang, Jian-Bo & Xu, Dong-Ling & Chin, Kwai-Sang, 2006. "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees," European Journal of Operational Research, Elsevier, vol. 175(1), pages 35-66, November.
    3. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    4. Yang, Guo-liang & Yang, Jian-bo & Liu, Wen-bin & Li, Xiao-xuan, 2013. "Cross-efficiency aggregation in DEA models using the evidential-reasoning approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 393-404.
    5. Xu, Dong-Ling & Yang, Jian-Bo & Wang, Ying-Ming, 2006. "The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1914-1943, November.
    6. Zsolt Ugray & Leon Lasdon & John Plummer & Fred Glover & James Kelly & Rafael Martí, 2007. "Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 328-340, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Xinyang & Liu, Qi & Deng, Yong, 2016. "Matrix games with payoffs of belief structures," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 868-879.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merigó, José M. & Casanovas, Montserrat & Yang, Jian-Bo, 2014. "Group decision making with expertons and uncertain generalized probabilistic weighted aggregation operators," European Journal of Operational Research, Elsevier, vol. 235(1), pages 215-224.
    2. Gao, Bin & Ni, Ming-Fang, 2009. "A note on article "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 809-812, September.
    3. Ni, Lei & Chen, Yu-wang & de Brujin, Oscar, 2021. "Towards understanding socially influenced vaccination decision making: An integrated model of multiple criteria belief modelling and social network analysis," European Journal of Operational Research, Elsevier, vol. 293(1), pages 276-289.
    4. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    5. Guo, Min & Yang, Jian-Bo & Chin, Kwai-Sang & Wang, Hongwei, 2007. "Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1294-1312, November.
    6. S. Nodoust & A. Mirzazadeh & G.-W. Weber, 2020. "An evidential reasoning approach for production modeling with deteriorating and ameliorating items," Operational Research, Springer, vol. 20(1), pages 1-19, March.
    7. Wang, Ying-Ming, 2009. "Reply to the note on article "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 813-817, September.
    8. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    9. Maddulapalli, Anil Kumar & Yang, Jian-Bo & Xu, Dong-Ling, 2012. "Estimation, modeling, and aggregation of missing survey data for prioritizing customer voices," European Journal of Operational Research, Elsevier, vol. 220(3), pages 762-776.
    10. Hua Zhu & Jianbin Zhao & Yang Xu & Limin Du, 2016. "Interval-Valued Belief Rule Inference Methodology Based on Evidential Reasoning-IRIMER," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1345-1366, November.
    11. Dong-Ling Xu, 2012. "An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 195(1), pages 163-187, May.
    12. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.
    13. Yang, Guo-liang & Yang, Jian-bo & Liu, Wen-bin & Li, Xiao-xuan, 2013. "Cross-efficiency aggregation in DEA models using the evidential-reasoning approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 393-404.
    14. Cui, Huizi & Zhou, Lingge & Li, Yan & Kang, Bingyi, 2022. "Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Fu, Chao & Yang, Shan-Lin, 2010. "The group consensus based evidential reasoning approach for multiple attributive group decision analysis," European Journal of Operational Research, Elsevier, vol. 206(3), pages 601-608, November.
    16. Zhang, Mei-Jing & Wang, Ying-Ming & Li, Ling-Hui & Chen, Sheng-Qun, 2017. "A general evidential reasoning algorithm for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1005-1015.
    17. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    18. Gao, Jianwei & Li, Ming & Liu, Huihui, 2015. "Generalized ordered weighted utility averaging-hyperbolic absolute risk aversion operators and their applications to group decision-making," European Journal of Operational Research, Elsevier, vol. 243(1), pages 258-270.
    19. Karaaslan, Abdulkerim & Gezen, Mesliha, 2022. "The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coefficient," Renewable Energy, Elsevier, vol. 182(C), pages 842-854.
    20. Voola, Persis & A., Vinaya Babu, 2017. "Study of aggregation algorithms for aggregating imprecise software requirements’ priorities," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1191-1199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:241:y:2015:i:2:p:579-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.