IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004435.html
   My bibliography  Save this article

A new complex belief entropy of χ2 divergence with its application in cardiac interbeat interval time series analysis

Author

Listed:
  • Zeng, Ziyue
  • Xiao, Fuyuan

Abstract

With outstanding capability to express uncertain information, complex evidence theory can be widely applied in a multiplicity of fields of representation and fusion of information. However, in complex evidence theory, conflict measurement is still an open issue. To address this problem, we propose a new complex belief χ2 divergence measure (CBχ2), which has the ability to measure the discrepancy between the complex basic belief assignments (CBBAs). In addition, the proposed CBχ2 divergence measure satisfies the properties of nonnegativity, nondegeneracy and symmetry. Particularly, when the CBBA degenerates to classical basic belief assignments (BBA), the proposed divergence can also measure the conflict well. On this basis, a novel BEoCBχ2D is proposed to measure the complexity of cardiac interbeat interval time series in biological system. An application in cardiac interbeat interval time series analysis demonstrates that BEoCBχ2D has better accuracy.

Suggested Citation

  • Zeng, Ziyue & Xiao, Fuyuan, 2023. "A new complex belief entropy of χ2 divergence with its application in cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004435
    DOI: 10.1016/j.chaos.2023.113542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Huizi & Zhou, Lingge & Li, Yan & Kang, Bingyi, 2022. "Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Chenhui Qiang & Yong Deng & Kang Hao Cheong, 2022. "Information Fractal Dimension Of Mass Function," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(06), pages 1-12, September.
    3. Sijilmassi, Ouafa & López Alonso, José-Manuel & Del Río Sevilla, Aurora & Barrio Asensio, María del Carmen, 2020. "Multifractal analysis of embryonic eye structures from female mice with dietary folic acid deficiency. Part I: Fractal dimension, lacunarity, divergence, and multifractal spectrum," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Lu, Guangqing & Smidtaite, Rasa & Navickas, Zenonas & Ragulskis, Minvydas, 2018. "The Effect of Explosive Divergence in a Coupled Map Lattice of Matrices," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 308-313.
    5. Xingyuan Chen & Yong Deng, 2022. "An Evidential Software Risk Evaluation Model," Mathematics, MDPI, vol. 10(13), pages 1-19, July.
    6. Hsu, Chang Francis & Lin, Ping-Yen & Chao, Hsuan-Hao & Hsu, Long & Chi, Sien, 2019. "Average Entropy: Measurement of disorder for cardiac RR interval signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
    7. Contreras-Reyes, Javier E., 2022. "Rényi entropy and divergence for VARFIMA processes based on characteristic and impulse response functions," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Smidtaite, Rasa & Ragulskis, Minvydas, 2022. "Spiral waves of divergence in the Barkley model of nilpotent matrices," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Siran & Xiao, Fuyuan, 2023. "Normal distribution based on maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Yu, Zihan & Deng, Yong, 2022. "Derive power law distribution with maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Zhao, Tong & Li, Zhen & Deng, Yong, 2023. "Information fractal dimension of Random Permutation Set," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    5. Xingyuan Chen & Yong Deng, 2022. "An Evidential Software Risk Evaluation Model," Mathematics, MDPI, vol. 10(13), pages 1-19, July.
    6. Zhou, Qianli & Deng, Yong, 2023. "Generating Sierpinski gasket from matrix calculus in Dempster–Shafer theory," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Martsepp, Merike & Laas, Tõnu & Laas, Katrin & Priimets, Jaanis & Tõkke, Siim & Mikli, Valdek, 2022. "Dependence of multifractal analysis parameters on the darkness of a processed image," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Lu, Guangqing & Smidtaite, Rasa & Howard, Daniel & Ragulskis, Minvydas, 2019. "An image hiding scheme in a 2-dimensional coupled map lattice of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 78-85.
    9. Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Cui, Huizi & Zhou, Lingge & Li, Yan & Kang, Bingyi, 2022. "Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Bao, Han & Ding, Ruoyu & Chen, Bei & Xu, Quan & Bao, Bocheng, 2023. "Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Oliver Faust & Ningrong Lei & Eng Chew & Edward J. Ciaccio & U Rajendra Acharya, 2020. "A Smart Service Platform for Cost Efficient Cardiac Health Monitoring," IJERPH, MDPI, vol. 17(17), pages 1-18, August.
    13. Wang, Minggang & Hua, Chenyu & Zhu, Mengrui & Xie, Shangshan & Xu, Hua & Vilela, André L.M. & Tian, Lixin, 2022. "Interrelation measurement based on the multi-layer limited penetrable horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Wang, Gangjin & Wei, Daijun & Li, Xiangbo & Wang, Ningkui, 2023. "A novel method for local anomaly detection of time series based on multi entropy fusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    15. Contreras-Reyes, Javier E. & Kharazmi, Omid, 2023. "Belief Fisher–Shannon information plane: Properties, extensions, and applications to time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Tuo Sun & Shihao Zhu & Ruochen Hao & Bo Sun & Jiemin Xie, 2022. "Traffic Missing Data Imputation: A Selective Overview of Temporal Theories and Algorithms," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    17. Rasheed, T. & Butt, S.I. & Pečarić, Đ. & Pečarić, J., 2022. "Generalized cyclic Jensen and information inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    18. Hu, Yuntong & Xiao, Fuyuan, 2022. "An efficient forecasting method for time series based on visibility graph and multi-subgraph similarity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Smidtaite, Rasa & Ragulskis, Minvydas, 2022. "Spiral waves of divergence in the Barkley model of nilpotent matrices," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    20. Kharazmi, Omid & Contreras-Reyes, Javier E., 2023. "Deng–Fisher information measure and its extensions: Application to Conway’s Game of Life," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.