IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics096007792200368x.html
   My bibliography  Save this article

Spiral waves of divergence in the Barkley model of nilpotent matrices

Author

Listed:
  • Smidtaite, Rasa
  • Ragulskis, Minvydas

Abstract

A new type of a spiral wave is presented in this paper. It is shown that spiral waves of divergence can be generated by the discrete Barkley model when all scalar nodal variables are replaced by two-dimensional nilpotent matrices of variables. However, spiral waves of divergence do not exist if scalar nodal variables of the Barkley model are replaced by idempotent matrices instead. Computational experiments demonstrate that spiral waves diverge along the centerline of the rotating bands, starting from the tip of the spiral wave – but the numerical values of the field stay bounded around zero in the regions between the rotating bands. Spiral waves of divergence are classified into five different classes according to their transient behavior. The formation of transient anti-phase clusters and Wada boundaries of five different types of spiral waves in the parameter plane of the Barkley model are examined in detail. Potential applications of spiral waves of divergence in hiding secret digital images are also discussed.

Suggested Citation

  • Smidtaite, Rasa & Ragulskis, Minvydas, 2022. "Spiral waves of divergence in the Barkley model of nilpotent matrices," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s096007792200368x
    DOI: 10.1016/j.chaos.2022.112158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200368X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajagopal, Karthikeyan & Wei, Zhouchao & Moroz, Irene & Karthikeyan, Anitha & Duraisamy, Prakash, 2020. "Elimination of spiral waves in a one-layer and two-layer network of pancreatic beta cells using a periodic stimuli," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Lu, Guangqing & Smidtaite, Rasa & Howard, Daniel & Ragulskis, Minvydas, 2019. "An image hiding scheme in a 2-dimensional coupled map lattice of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 78-85.
    3. López Garza, Gabriel & Nicolás Mata, Aurelio & Román Alonso, Graciela & Godínez Fernández, José Rafael & Castro García, Miguel Alfonso, 2022. "Cell-to-cell mathematical modeling of arrhythmia phenomena in the heart," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 153-172.
    4. Lu, Guangqing & Smidtaite, Rasa & Navickas, Zenonas & Ragulskis, Minvydas, 2018. "The Effect of Explosive Divergence in a Coupled Map Lattice of Matrices," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 308-313.
    5. Rajagopal, Karthikeyan & Hussain, Iqtadar & Rostami, Zahra & Li, Chunbiao & Pham, Viet-Thanh & Jafari, Sajad, 2021. "Magnetic induction can control the effect of external electrical stimuli on the spiral wave," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    6. Antonio Ambrosio & Lorenzo Marrucci & Fabio Borbone & Antonio Roviello & Pasqualino Maddalena, 2012. "Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    7. Bukh, Andrei & Strelkova, Galina & Anishchenko, Vadim, 2019. "Spiral wave patterns in a two-dimensional lattice of nonlocally coupled maps modeling neural activity," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 75-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Ziyue & Xiao, Fuyuan, 2023. "A new complex belief entropy of χ2 divergence with its application in cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Rajagopal, Karthikeyan & Karthikeyan, Anitha, 2022. "Spiral waves and their characterization through spatioperiod and spatioenergy under distinct excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Shepelev, I.A. & Bukh, A.V. & Muni, S.S. & Anishchenko, V.S., 2020. "Role of solitary states in forming spatiotemporal patterns in a 2D lattice of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Rajgopal, Karthikeyan & Karthikeyan, Anitha & V.R., Varun Raj, 2022. "Dynamical behavior of pancreatic β cells with memductance flux coupling: Considering nodal properties and wave propagation in the excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    5. Lu, Guangqing & Smidtaite, Rasa & Howard, Daniel & Ragulskis, Minvydas, 2019. "An image hiding scheme in a 2-dimensional coupled map lattice of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 78-85.
    6. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Rajagopal, Karthikeyan & Jafari, Sajad & Li, Chunbiao & Karthikeyan, Anitha & Duraisamy, Prakash, 2021. "Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Yang, Xiaofang & Lu, Tianxiu & Waseem, Anwar, 2021. "Chaotic properties of a class of coupled mapping lattice induced by fuzzy mapping in non-autonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    9. A.V., Bukh & V.S., Anishchenko, 2020. "Spiral and target wave chimeras in a 2D network of nonlocally coupled van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    10. Bukh, A.V. & Strelkova, G.I. & Anishchenko, V.S., 2020. "Synchronization features of target wave structures with an incoherent center," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    12. Zeng, Ziyue & Xiao, Fuyuan, 2023. "A new complex belief entropy of χ2 divergence with its application in cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s096007792200368x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.