IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip2s0960077922010360.html
   My bibliography  Save this article

Dynamical behavior of pancreatic β cells with memductance flux coupling: Considering nodal properties and wave propagation in the excitable media

Author

Listed:
  • Rajgopal, Karthikeyan
  • Karthikeyan, Anitha
  • V.R., Varun Raj

Abstract

The bursting oscillation modes of the pancreatic β cells releases insulin for regulating the glucose level in blood. We modified the Pernarowski’s pancreatic beta cell model by introducing electromagnetic flux since the electrical coupling between the cells induce and exchange magnetic flux effect while it is in a network. Influence of the magnetic flux in dynamics of the electrical activities particularly bursting behavior is studied. we derived the bifurcation plot and calculated the Lyapunov exponent to identify the parameter range, the system oscillating in chaotic region. The bifurcation plot for magnetic flux coefficient and its corresponding Lyapunov spectrum are presented to describe the transition of the system from chaotic bursting to periodic bursting. Significance of the magnetic flux on the modified system is discussed and revealed the influence on dynamical changes. Lyapunov exponents of the two major parameters is presented for understanding the effect of flux on existing parameters. To reinforce the investigation we adopted Hamiltonian energy method and the level of energy accumulation for different states are plotted. A lattice array of NXN is formulated to study the dynamics of the network. The simulation results of the network for different values of the flux coupling coefficient unrevealing the transition of regular pattern into turbulent waves and reduction in amplitude. The provide a better understanding the mechanism of transformation from chaotic bursting to periodic bursting phenomena, we used sample entropy. The complexity changes in every node is captured and plotted for different values of the magnetic flux coefficient. The obtained results described the dynamical changes of the pancreatic beta cells while it exposed to magnetic flux, the chaotic oscillation of the nodes are suppressed as the flux increased. In a network, regular patterns are broken down and turbulent waves bring down the chaotic bursting into periodic bursting. Finally we provided a potential future direction to proceed the research work further.

Suggested Citation

  • Rajgopal, Karthikeyan & Karthikeyan, Anitha & V.R., Varun Raj, 2022. "Dynamical behavior of pancreatic β cells with memductance flux coupling: Considering nodal properties and wave propagation in the excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010360
    DOI: 10.1016/j.chaos.2022.112857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922010360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    2. Yao, Zhao & Zhou, Ping & Alsaedi, Ahmed & Ma, Jun, 2020. "Energy flow-guided synchronization between chaotic circuits," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    3. Rajagopal, Karthikeyan & Wei, Zhouchao & Moroz, Irene & Karthikeyan, Anitha & Duraisamy, Prakash, 2020. "Elimination of spiral waves in a one-layer and two-layer network of pancreatic beta cells using a periodic stimuli," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Meibo Wang & Shaojuan Ma & Xinzhi Liu, 2021. "Hamilton Energy Control for the Chaotic System with Hidden Attractors," Complexity, Hindawi, vol. 2021, pages 1-10, August.
    5. Guo, Shengli & Xu, Ying & Wang, Chunni & Jin, Wuyin & Hobiny, Aatef & Ma, Jun, 2017. "Collective response, synapse coupling and field coupling in neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 120-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhilong & Ma, Jun & Zhang, Ge & Zhang, Yin, 2019. "Synchronization control between two Chua′s circuits via capacitive coupling," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 94-106.
    2. Yao, Zhao & Wang, Chunni, 2021. "Control the collective behaviors in a functional neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Ma, Jun & Xu, Wenkang & Zhou, Ping & Zhang, Ge, 2019. "Synchronization between memristive and initial-dependent oscillators driven by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    5. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Nazarimehr, Fahimeh & Panahi, Shirin & Jalili, Mahdi & Perc, Matjaž & Jafari, Sajad & Ferčec, Brigita, 2020. "Multivariable coupling and synchronization in complex networks," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    7. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Ren, Guodong & Xue, Yuxiong & Li, Yuwei & Ma, Jun, 2019. "Field coupling benefits signal exchange between Colpitts systems," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 45-54.
    9. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    10. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Zhou, Ping & Ma, Jun & Xu, Ying, 2023. "Phase synchronization between neurons under nonlinear coupling via hybrid synapse," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Yang, Feifei & Ma, Jun & An, Xinlei, 2022. "Mode selection and stability of attractors in Chua circuit driven by piezoelectric sources," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    13. Li, Zhijun & Chen, Kaijie, 2023. "Neuromorphic behaviors in a neuron circuit based on current-controlled Chua Corsage Memristor," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Yu, Fei & Shen, Hui & Zhang, Zinan & Huang, Yuanyuan & Cai, Shuo & Du, Sichun, 2021. "Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    17. Panahi, Shirin & Nazarimehr, Fahimeh & Jafari, Sajad & Sprott, Julien C. & Perc, Matjaž & Repnik, Robert, 2021. "Optimal synchronization of circulant and non-circulant oscillators," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    18. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Jules Tagne Fossi & Vandi Deli & Hélène Carole Edima & Zeric Tabekoueng Njitacke & Florent Feudjio Kemwoue & Jacques Atangana, 2022. "Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-17, April.
    20. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.