IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925005094.html
   My bibliography  Save this article

Modeling and improving liquid hydrogen transfer processes

Author

Listed:
  • Gil-Esmendia, Albert
  • Flores, Robert J.
  • Brouwer, Jack

Abstract

Hydrogen will play a pivotal role in reducing global carbon emissions. Cryogenic liquid hydrogen -LH2- is a promising storage and transportation solution. However, LH2 transfer processes are complex, and the safe and efficient transfer operations of this fluid require deep and precise understanding. This study extends an existing physics-based model to simulate the dynamics of pressure difference-driven and pump-driven LH2 transfer operations between a supply and receiving LH2 storage tanks. A critical model output is the predicted LH2 boil-off and venting, which is crucial for evaluating system design, safety, efficiency, and environmental impacts. Results show that LH2 pressure-driven transfer processes evaporate up to 20 % of LH2 to pressurize the supply tank and deliver warmer LH2. Switching to a pump-driven transfer process reduces venting to 0 % to 16 % of total hydrogen transferred, where venting is lowest for slow transfer rates and when receiving tank initial pressure is low. Maximum transferred LH2 mass to a receiving tank can be increased by 6.5 % and 13 % versus flow rates that minimize transfer time or venting by manipulating flow rate and initial tank pressures.

Suggested Citation

  • Gil-Esmendia, Albert & Flores, Robert J. & Brouwer, Jack, 2025. "Modeling and improving liquid hydrogen transfer processes," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005094
    DOI: 10.1016/j.apenergy.2025.125779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    2. Saif Z. S. Al Ghafri & Adam Swanger & Vincent Jusko & Arman Siahvashi & Fernando Perez & Michael L. Johns & Eric F. May, 2022. "Modelling of Liquid Hydrogen Boil-Off," Energies, MDPI, vol. 15(3), pages 1-16, February.
    3. Sonja Renssen, 2020. "The hydrogen solution?," Nature Climate Change, Nature, vol. 10(9), pages 799-801, September.
    4. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Jessie R. Smith & Savvas Gkantonas & Epaminondas Mastorakos, 2022. "Modelling of Boil-Off and Sloshing Relevant to Future Liquid Hydrogen Carriers," Energies, MDPI, vol. 15(6), pages 1-32, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
    3. Zubi, Ghassan & Kuhn, Maximilian & Makridis, Sofoklis & Coutinho, Savio & Dorasamy, Stanley, 2025. "Aviation sector decarbonization within the hydrogen economy – A UAE case study," Energy Policy, Elsevier, vol. 198(C).
    4. Cao, Qiang & Chen, Yuji & Wang, Zhiping & Wang, Miaomiao & Wang, Pengcheng & Ge, Lichun & Li, Peng & Zhao, Qinyu & Wang, Bo & Gan, Zhihua, 2025. "Improving the cooling efficiency of cryo-compressed hydrogen based on the temperature-distributed method in regenerative refrigerators," Energy, Elsevier, vol. 314(C).
    5. Daehoon Kang & Sungho Yun & Bo-kyong Kim, 2022. "Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive," Energies, MDPI, vol. 15(12), pages 1-13, June.
    6. Qiao, Yan & Jiang, Wenquan & Li, Yang & Dong, Xiaoxiao & Yang, Fan, 2024. "Design and analysis of steam methane reforming hydrogen liquefaction and waste heat recovery system based on liquefied natural gas cold energy," Energy, Elsevier, vol. 302(C).
    7. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Kayikci, Yasanur & Ali, Md. Ramjan & Khan, Sharfuddin Ahmed & Ikpehai, Augustine, 2025. "Examining dynamics of hydrogen supply chains," Technological Forecasting and Social Change, Elsevier, vol. 215(C).
    9. Haoxin, Dong & Qiyuan, Deng & Chaojie, Li & Nian, Liu & Zhang, Wenzuo & Hu, Mingyue & Xu, Chuanbo, 2025. "A comprehensive review on renewable power-to-green hydrogen-to-power systems: Green hydrogen production, transportation, storage, re-electrification and safety," Applied Energy, Elsevier, vol. 390(C).
    10. Kumar, Laveet & Sleiti, Ahmad K., 2025. "A comprehensive review of hydrogen safety through a metadata analysis framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    11. Bian, Jiang & Zhang, Xingwang & Zhang, Rui & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2024. "Conceptual design and analysis of a new hydrogen liquefaction process based on heat pump systems," Applied Energy, Elsevier, vol. 374(C).
    12. Golrokh Sani, Ahmad & Najafi, Hamidreza & Azimi, Seyedeh Shakiba, 2022. "Dynamic thermal modeling of the refrigerated liquified CO2 tanker in carbon capture, utilization, and storage chain: A truck transport case study," Applied Energy, Elsevier, vol. 326(C).
    13. Naquash, Ahmad & Riaz, Amjad & Qyyum, Muhammad Abdul & Aziz, Muhammad & Assareh, Ehsanolah & Lee, Moonyong, 2023. "Liquid hydrogen storage and regasification process integrated with LNG, NGL, and liquid helium production," Renewable Energy, Elsevier, vol. 213(C), pages 165-175.
    14. Cheng, Fangwei & Luo, Hongxi & Jenkins, Jesse D. & Larson, Eric D., 2023. "The value of low- and negative-carbon fuels in the transition to net-zero emission economies: Lifecycle greenhouse gas emissions and cost assessments across multiple fuel types," Applied Energy, Elsevier, vol. 331(C).
    15. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    16. Jorgen Depken & Alexander Dyck & Lukas Roß & Sören Ehlers, 2022. "Safety Considerations of Hydrogen Application in Shipping in Comparison to LNG," Energies, MDPI, vol. 15(9), pages 1-20, April.
    17. Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
    18. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    19. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    20. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.