IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004465.html
   My bibliography  Save this article

Resilient mobile energy storage resources-based microgrid formation considering power-transportation-information network interdependencies

Author

Listed:
  • Zhong, Jian
  • Chen, Chen
  • Zhang, Haochen
  • Shen, Wentao
  • Fan, Zhong
  • Qiu, Dawei
  • Bie, Zhaohong

Abstract

The advancement of smart city technologies has deepened the interactions among power, transportation, and information networks (PTINs). Current mobile energy storage resource (MESR) based power distribution network (PDN) restoration schemes often overlook the interdependencies among PTINs, thus hindering efficient load restoration. This paper outlines the key interacting factors within PTINs, including power supply demand, traffic efficiency, communication coverage, electric vehicle (EV) deployment capability, and PDN controllability. We further develop a PTIN-interacting model to demonstrate the ‘chained recovery effect’ in MESR-based restoration. Building on this, we propose a rolling optimization load restoration scheme utilizing EVs, mobile energy storage systems (MESSs), and unmanned aerial vehicles (UAVs), to restore the power supply to loads. The algorithm optimizes the load restoration schemes by evaluating the criticality of power loads, transportation, and communication nodes and their interdependencies. It further dynamically recalculates subsequent restoration schemes based on the varying states of PTINs during extreme events and the recovery impacts of prior operations on the PTINs, using a rolling horizon. This approach adapts to changing conditions, improving load restoration, enhancing the solution’s adaptability to uncertainties during the restoration process, and increasing its practicality. Additionally, a PTIN-integrated co-simulation platform is developed to verify the effectiveness of the restoration methods. Case studies conducted on the platform show significant improvements in both the restored load capacity and restoration speed of the proposed scheme.

Suggested Citation

  • Zhong, Jian & Chen, Chen & Zhang, Haochen & Shen, Wentao & Fan, Zhong & Qiu, Dawei & Bie, Zhaohong, 2025. "Resilient mobile energy storage resources-based microgrid formation considering power-transportation-information network interdependencies," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004465
    DOI: 10.1016/j.apenergy.2025.125716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lu & Yu, Shunjiang & Zhang, Bo & Li, Gen & Cai, Yongxiang & Tang, Wei, 2023. "Outage management of hybrid AC/DC distribution systems: Co-optimize service restoration with repair crew and mobile energy storage system dispatch," Applied Energy, Elsevier, vol. 335(C).
    2. Barani, Mostafa & Vadlamudi, Vijay Venu & Farzin, Hossein, 2023. "Impact of cyber failures on operation and adequacy of Multi-Microgrid distribution systems," Applied Energy, Elsevier, vol. 348(C).
    3. Wu, Hao & Xie, Yunyun & Xu, Yan & Wu, Qiuwei & Yu, Chen & Sun, Jinsheng, 2022. "Resilient scheduling of MESSs and RCs for distribution system restoration considering the forced cut-off of wind power," Energy, Elsevier, vol. 244(PB).
    4. Xu, Yihao & Xing, Yankai & Zhang, Guangdou & Li, Jian & An, Haopeng & Bamisile, Olusola & Huang, Qi, 2024. "Multi-objective resilient recovery strategy for urban wind-solar-MPS-EV electric system after disastrous events," Applied Energy, Elsevier, vol. 369(C).
    5. Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Ma, Ziyao & Huang, Jiajin, 2024. "Equilibrium configuration strategy of vehicle-to-grid-based electric vehicle charging stations in low-carbon resilient distribution networks," Applied Energy, Elsevier, vol. 361(C).
    6. Ghasemi, Sasan & Moshtagh, Jamal, 2022. "Distribution system restoration after extreme events considering distributed generators and static energy storage systems with mobile energy storage systems dispatch in transportation systems," Applied Energy, Elsevier, vol. 310(C).
    7. Zhang, Xi & Dong, Zihang & Huangfu, Fenyu & Ye, Yujian & Strbac, Goran & Kang, Chongqing, 2024. "Strategic dispatch of electric buses for resilience enhancement of urban energy systems," Applied Energy, Elsevier, vol. 361(C).
    8. Wu, Chuantao & Wang, Tao & Zhou, Dezhi & Cao, Shankang & Sui, Quan & Lin, Xiangning & Li, Zhengtian & Wei, Fanrong, 2023. "A distributed restoration framework for distribution systems incorporating electric buses," Applied Energy, Elsevier, vol. 331(C).
    9. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    10. Shi, Qingxin & Li, Fangxing & Dong, Jin & Olama, Mohammed & Wang, Xiaofei & Winstead, Chris & Kuruganti, Teja, 2022. "Co-optimization of repairs and dynamic network reconfiguration for improved distribution system resilience," Applied Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Qianyu & Zhou, Guanyu & Huang, Qilin & Dong, Zhaoyang & Jia, Youwei, 2025. "Resilience enhancement for power distribution networks in coordination with electric vehicle fleets," Applied Energy, Elsevier, vol. 390(C).
    2. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    3. Sadeghi, M. & Kalantar, M., 2023. "Fully decentralized multi-agent coordination scheme in smart distribution restoration: Multilevel consensus," Applied Energy, Elsevier, vol. 350(C).
    4. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    5. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    6. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    7. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    8. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    9. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    10. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    11. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    12. repec:plo:pone00:0090265 is not listed on IDEAS
    13. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.
    15. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    16. Dong, Zhengcheng & Tian, Meng & Liang, Jiaqi & Fang, Yanjun & Lu, Yuxin, 2019. "Research on the connection radius of dependency links in interdependent spatial networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 555-564.
    17. Chen, Lei & Lu, Juntao & Wang, Yalin & Jia, Chunxiao & Liu, Run-Ran & Meng, Fanyuan, 2025. "Cascading failures with group support in interdependent hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    18. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    19. Zhang, Yushuai & Ren, Wangjun & Feng, Jinji & Zhao, Jian & Chen, Yicun & Mi, Yongtao, 2024. "A cascading failure propagation model for a network with a node emergency recovery function," Applied Energy, Elsevier, vol. 371(C).
    20. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    21. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.