IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v388y2025ics0306261925003939.html
   My bibliography  Save this article

Asymmetric auto-rebalancing of electrolyte for high capacity retention and high energy efficiency of vanadium redox flow batteries

Author

Listed:
  • Zou, Wen-Jiang
  • Jung, Seunghun

Abstract

Capacity fade and performance degradation under long-term operation are critical concerns in the application of vanadium redox flow batteries (VRFBs) in large-scale energy-storage systems. This study introduces an innovative electrolyte-rebalancing technique named asymmetric auto-rebalancing (AAR) to achieve high capacity retention and high efficiency of VRFBs during long-term operation. Three VRFBs—one each without rebalancing (NR), with auto-rebalancing (AR), and with AAR—were prepared for a performance comparison. Also, the capacity and performance degradation mechanisms of VRFBs with three different electrolyte rebalancing methods were theoretically analyzed. Long-term charge–discharge cycling tests were conducted on the VRFBs to verify the effectiveness of AAR according to the current, temperature, and electrolyte flow rate. AAR showed the most consistent performance under long-term operation, with negligible electrolyte imbalance. Further, AAR achieved the most stable capacity retention and highest energy efficiency (84.66 %) compared to NR (82.77 %) and AR (82.98 %). Finally, the electrolyte volume change was predicted by a theoretical analysis, which was consistent with the experimental results.

Suggested Citation

  • Zou, Wen-Jiang & Jung, Seunghun, 2025. "Asymmetric auto-rebalancing of electrolyte for high capacity retention and high energy efficiency of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003939
    DOI: 10.1016/j.apenergy.2025.125663
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
    2. Hyeonhong Jung & Seongjun Lee, 2023. "A Study on Capacity and State of Charge Estimation of VRFB Systems Using Cumulated Charge and Electrolyte Volume under Rebalancing Conditions," Energies, MDPI, vol. 16(5), pages 1-14, March.
    3. Nick Blume & Maik Becker & Thomas Turek & Christine Minke, 2022. "Life cycle assessment of an industrial‐scale vanadium flow battery," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1796-1808, October.
    4. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    5. Zou, Wen-Jiang & Kim, Young-Bae & Jung, Seunghun, 2024. "Capacity fade prediction for vanadium redox flow batteries during long-term operations," Applied Energy, Elsevier, vol. 356(C).
    6. Kalvin Schofield & Petr Musilek, 2022. "State of Charge and Capacity Tracking in Vanadium Redox Flow Battery Systems," Clean Technol., MDPI, vol. 4(3), pages 1-12, June.
    7. Bhattarai, Arjun & Wai, Nyunt & Schweiss, Rüdiger & Whitehead, Adam & Scherer, Günther G. & Ghimire, Purna C. & Lim, Tuti M. & Hng, Huey Hoon, 2019. "Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level," Applied Energy, Elsevier, vol. 236(C), pages 437-443.
    8. Mohamed, M.R. & Leung, P.K. & Sulaiman, M.H., 2015. "Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system," Applied Energy, Elsevier, vol. 137(C), pages 402-412.
    9. Zhang, Yunong & Liu, Le & Xi, Jingyu & Wu, Zenghua & Qiu, Xinping, 2017. "The benefits and limitations of electrolyte mixing in vanadium flow batteries," Applied Energy, Elsevier, vol. 204(C), pages 373-381.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wen-Jiang & Kim, Young-Bae & Jung, Seunghun, 2024. "Capacity fade prediction for vanadium redox flow batteries during long-term operations," Applied Energy, Elsevier, vol. 356(C).
    2. Puleston, Thomas & Serra, Maria & Costa-Castelló, Ramon, 2024. "Vanadium redox flow battery capacity loss mitigation strategy based on a comprehensive analysis of electrolyte imbalance effects," Applied Energy, Elsevier, vol. 355(C).
    3. Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
    4. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    5. He, Guannan & Ciez, Rebecca & Moutis, Panayiotis & Kar, Soummya & Whitacre, Jay F., 2020. "The economic end of life of electrochemical energy storage," Applied Energy, Elsevier, vol. 273(C).
    6. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    7. Chen, Xinjiang & Yang, Yu & Wang, Jianxiao & Song, Jie & He, Guannan, 2023. "Battery valuation and management for battery swapping station," Energy, Elsevier, vol. 279(C).
    8. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    9. Brown, David P. & Muehlenbachs, Lucija, 2024. "The value of electricity reliability: Evidence from battery adoption," Journal of Public Economics, Elsevier, vol. 239(C).
    10. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    12. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    13. Bhattarai, Arjun & Wai, Nyunt & Schweiss, Rüdiger & Whitehead, Adam & Scherer, Günther G. & Ghimire, Purna C. & Lim, Tuti M. & Hng, Huey Hoon, 2019. "Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level," Applied Energy, Elsevier, vol. 236(C), pages 437-443.
    14. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Wu, Xiaohua & Hu, Xiaosong & Yin, Xiaofeng & Zhang, Caiping & Qian, Shide, 2017. "Optimal battery sizing of smart home via convex programming," Energy, Elsevier, vol. 140(P1), pages 444-453.
    16. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    17. Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    19. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    20. Wei, L. & Wu, M.C. & Zhao, T.S. & Zeng, Y.K. & Ren, Y.X., 2018. "An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage," Applied Energy, Elsevier, vol. 215(C), pages 98-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.