IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925002028.html
   My bibliography  Save this article

Energy management strategy for community prosumers aggregated VPP participation in the ancillary services market based on P2P trading

Author

Listed:
  • Li, Li
  • Fan, Shuai
  • Xiao, Jucheng
  • Zhang, Yi
  • Huang, Renke
  • He, Guangyu

Abstract

Multi-energy virtual power plants (MEVPPs) are a promising option for aggregating decentralized resources to meet the access requirements of the ancillary services (ASs) market. However, distributed resources are generally considered to be vertically scheduled by MEVPPs, ignoring that their ownership belongs to different prosumers with evident interest conflicts. To this end, this study proposes an equilibrium energy management strategy for MEVPPs that aggregate community prosumers to participate in the ASs market with peer-to-peer (P2P) transaction-driven. That is, MEVPP, as a bridge, articulates the local P2P market and the ASs market, solving the market incompatibility problem. MEVPP sets energy and AS prices, and prosumers determine P2P exchange and operation strategies based on their information and MEVPP's P2P pricing. MEVPP adjusts P2P prices according to the aggregation of prosumers' ASs until the benefit allocation is balanced. Then, MEVPP completes the bid. In this process, ancillary service requirements are effectively internalized in P2P prices. Heterogeneous prosumer models are developed considering comprehensive ASs scheduling for multi-energy devices. An illustrative case study indicates that compared to prosumers stand-alone, the proposed approach makes a profit of 19,830 RMB/day for MEVPP and cost savings of 39%, 9% and 35% for recreational, industrial and commercial prosumers, respectively.

Suggested Citation

  • Li, Li & Fan, Shuai & Xiao, Jucheng & Zhang, Yi & Huang, Renke & He, Guangyu, 2025. "Energy management strategy for community prosumers aggregated VPP participation in the ancillary services market based on P2P trading," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002028
    DOI: 10.1016/j.apenergy.2025.125472
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jian & Ilea, Valentin & Bovo, Cristian & Xie, Ning & Wang, Yong, 2023. "Optimal self-scheduling for a multi-energy virtual power plant providing energy and reserve services under a holistic market framework," Energy, Elsevier, vol. 278(PB).
    2. Izanlo, Ali & Sheikholeslami, Abdolreza & Gholamian, S. Asghar & Kazemi, Mohammad Verij & Hosseini, S. Naghi, 2024. "A combination of MILP and game theory methods for P2P energy trading by considering network constraints," Applied Energy, Elsevier, vol. 374(C).
    3. Wang, Jian & Ilea, Valentin & Bovo, Cristian & Wang, Yong, 2024. "Two-stage coordinated scheduling of hydrogen-integrated multi-energy virtual power plant in joint capacity, energy, and ancillary service markets," Renewable Energy, Elsevier, vol. 235(C).
    4. Saberi-Beglar, Kasra & Zare, Kazem & Seyedi, Heresh & Marzband, Mousa & Nojavan, Sayyad, 2023. "Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads," Applied Energy, Elsevier, vol. 329(C).
    5. Zeng, Yu & Wei, Xuan & Yao, Yuan & Xu, Yinliang & Sun, Hongbin & Kin Victor Chan, Wai & Feng, Wei, 2023. "Determining the pricing and deployment strategy for virtual power plants of peer-to-peer prosumers: A game-theoretic approach," Applied Energy, Elsevier, vol. 345(C).
    6. Li, Li & Fan, Shuai & Xiao, Jucheng & Zhou, Huan & Shen, Yu & He, Guangyu, 2024. "Fair trading strategy in multi-energy systems considering design optimization and demand response based on consumer psychology," Energy, Elsevier, vol. 306(C).
    7. Rosales-Asensio, Enrique & Diez, David Borge & Sarmento, Paula, 2024. "Electricity balancing challenges for markets with high variable renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Conley, John P. & Wilkie, Simon, 1996. "An Extension of the Nash Bargaining Solution to Nonconvex Problems," Games and Economic Behavior, Elsevier, vol. 13(1), pages 26-38, March.
    9. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    10. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    11. Zhang, Yi & Meng, Yan & Fan, Shuai & Xiao, Jucheng & Li, Li & He, Guangyu, 2025. "Multi-time scale customer directrix load-based demand response under renewable energy and customer uncertainties," Applied Energy, Elsevier, vol. 383(C).
    12. Jia, Hongjie & Wang, Xiaoyu & Jin, Xiaolong & Cheng, Lin & Mu, Yunfei & Yu, Xiaodan & Wei, Wei, 2024. "Optimal pricing of integrated community energy system for building prosumers with P2P multi-energy trading," Applied Energy, Elsevier, vol. 365(C).
    13. Armioun, Majid & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Siano, Pierluigi, 2023. "Optimal scheduling of CCHP-based resilient energy distribution system considering active microgrids' multi-carrier energy transactions," Applied Energy, Elsevier, vol. 350(C).
    14. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Wang, Bo, 2025. "Optimal energy management for prosumers and power plants considering transmission congestion based on carbon emission flow," Applied Energy, Elsevier, vol. 377(PB).
    15. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    16. Wei, Xuan & Xu, Yinliang & Sun, Hongbin & Bai, Xiang & Chang, Xinyue & Xue, Yixun, 2024. "Day-ahead optimal dispatch of a virtual power plant in the joint energy-reserve-carbon market," Applied Energy, Elsevier, vol. 356(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yuzheng & Dong, Jun & Huang, Hexiang, 2024. "Optimal bidding strategy for the price-maker virtual power plant in the day-ahead market based on multi-agent twin delayed deep deterministic policy gradient algorithm," Energy, Elsevier, vol. 306(C).
    2. Kaiss, Mateus & Wan, Yihao & Gebbran, Daniel & Vila, Clodomiro Unsihuay & Dragičević, Tomislav, 2025. "Review on Virtual Power Plants/Virtual Aggregators: Concepts, applications, prospects and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    3. Wu, Haochi & Qiu, Dawei & Zhang, Liyu & Sun, Mingyang, 2024. "Adaptive multi-agent reinforcement learning for flexible resource management in a virtual power plant with dynamic participating multi-energy buildings," Applied Energy, Elsevier, vol. 374(C).
    4. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    5. Yi Yu & Guo-Ping Liu & Yi Huang & Chi Yung Chung & Yu-Zhong Li, 2024. "A blockchain consensus mechanism for real-time regulation of renewable energy power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Zhang, Sen & Hu, Weihao & Du, Jialin & Cao, Xilin & Bai, Chunguang & Liu, Wen & Wang, Daojuan & Chen, Zhe, 2025. "Hierarchical distributionally robust scheduling strategy for distributed energy systems in the energy-sharing environment," Applied Energy, Elsevier, vol. 388(C).
    7. Zeng, Yu & Wei, Xuan & Yao, Yuan & Xu, Yinliang & Sun, Hongbin & Kin Victor Chan, Wai & Feng, Wei, 2023. "Determining the pricing and deployment strategy for virtual power plants of peer-to-peer prosumers: A game-theoretic approach," Applied Energy, Elsevier, vol. 345(C).
    8. Zhang, Yi & Meng, Yan & Fan, Shuai & Xiao, Jucheng & Li, Li & He, Guangyu, 2025. "Multi-time scale customer directrix load-based demand response under renewable energy and customer uncertainties," Applied Energy, Elsevier, vol. 383(C).
    9. Xie, Haonan & Ahmad, Tanveer & Zhang, Dongdong & Goh, Hui Hwang & Wu, Thomas, 2024. "Community-based virtual power plants’ technology and circular economy models in the energy sector: A Techno-economy study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Meng, Yuan & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "A Holistic P2P market for active and reactive energy trading in VPPs considering both financial benefits and network constraints," Applied Energy, Elsevier, vol. 356(C).
    11. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    13. Elimam, Mohamed & El Moursi, Mohamed Shawki & EL-Fouly, Tarek H.M. & Al-Durra, Ahmed & Al Hosani, Khalifa Hassan, 2025. "Transactive energy trading among multi-microgrids in a distribution network with fair loss sharing," Applied Energy, Elsevier, vol. 381(C).
    14. Ley, Eduardo, 2006. "Statistical inference as a bargaining game," Economics Letters, Elsevier, vol. 93(1), pages 142-149, October.
    15. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    16. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    17. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    18. Stéphane Auray & David L. Fuller, 2020. "Eligibility, experience rating, and unemployment insurance take‐up," Quantitative Economics, Econometric Society, vol. 11(3), pages 1059-1107, July.
    19. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    20. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.